Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/feature/peak.py

358 lines
13 KiB
Python
Raw Permalink Normal View History

import numpy as np
import scipy.ndimage as ndi
from .. import measure
from ..filters import rank_order
def _get_high_intensity_peaks(image, mask, num_peaks):
"""
Return the highest intensity peak coordinates.
"""
# get coordinates of peaks
coord = np.nonzero(mask)
intensities = image[coord]
# Highest peak first
idx_maxsort = np.argsort(-intensities)
coord = np.transpose(coord)[idx_maxsort]
# select num_peaks peaks
if len(coord) > num_peaks:
coord = coord[:num_peaks]
return coord
def _get_peak_mask(image, min_distance, footprint, threshold_abs,
threshold_rel):
"""
Return the mask containing all peak candidates above thresholds.
"""
if footprint is not None:
image_max = ndi.maximum_filter(image, footprint=footprint,
mode='constant')
else:
size = 2 * min_distance + 1
image_max = ndi.maximum_filter(image, size=size, mode='constant')
mask = image == image_max
if threshold_rel is not None:
threshold = max(threshold_abs, threshold_rel * image.max())
else:
threshold = threshold_abs
mask &= image > threshold
return mask
def _exclude_border(mask, exclude_border):
"""
Remove peaks near the borders
"""
# zero out the image borders
for i, excluded in enumerate(exclude_border):
if excluded == 0:
continue
mask[(slice(None),) * i + (slice(None, excluded),)] = False
mask[(slice(None),) * i + (slice(-excluded, None),)] = False
return mask
def peak_local_max(image, min_distance=1, threshold_abs=None,
threshold_rel=None, exclude_border=True, indices=True,
num_peaks=np.inf, footprint=None, labels=None,
num_peaks_per_label=np.inf):
"""Find peaks in an image as coordinate list or boolean mask.
Peaks are the local maxima in a region of `2 * min_distance + 1`
(i.e. peaks are separated by at least `min_distance`).
If there are multiple local maxima with identical pixel intensities
inside the region defined with `min_distance`,
the coordinates of all such pixels are returned.
If both `threshold_abs` and `threshold_rel` are provided, the maximum
of the two is chosen as the minimum intensity threshold of peaks.
Parameters
----------
image : ndarray
Input image.
min_distance : int, optional
Minimum number of pixels separating peaks in a region of `2 *
min_distance + 1` (i.e. peaks are separated by at least
`min_distance`).
To find the maximum number of peaks, use `min_distance=1`.
threshold_abs : float, optional
Minimum intensity of peaks. By default, the absolute threshold is
the minimum intensity of the image.
threshold_rel : float, optional
Minimum intensity of peaks, calculated as `max(image) * threshold_rel`.
exclude_border : int, tuple of ints, or bool, optional
If positive integer, `exclude_border` excludes peaks from within
`exclude_border`-pixels of the border of the image.
If tuple of non-negative ints, the length of the tuple must match the
input array's dimensionality. Each element of the tuple will exclude
peaks from within `exclude_border`-pixels of the border of the image
along that dimension.
If True, takes the `min_distance` parameter as value.
If zero or False, peaks are identified regardless of their distance
from the border.
indices : bool, optional
If True, the output will be an array representing peak
coordinates. The coordinates are sorted according to peaks
values (Larger first). If False, the output will be a boolean
array shaped as `image.shape` with peaks present at True
elements.
num_peaks : int, optional
Maximum number of peaks. When the number of peaks exceeds `num_peaks`,
return `num_peaks` peaks based on highest peak intensity.
footprint : ndarray of bools, optional
If provided, `footprint == 1` represents the local region within which
to search for peaks at every point in `image`. Overrides
`min_distance`.
labels : ndarray of ints, optional
If provided, each unique region `labels == value` represents a unique
region to search for peaks. Zero is reserved for background.
num_peaks_per_label : int, optional
Maximum number of peaks for each label.
Returns
-------
output : ndarray or ndarray of bools
* If `indices = True` : (row, column, ...) coordinates of peaks.
* If `indices = False` : Boolean array shaped like `image`, with peaks
represented by True values.
Notes
-----
The peak local maximum function returns the coordinates of local peaks
(maxima) in an image. A maximum filter is used for finding local maxima.
This operation dilates the original image. After comparison of the dilated
and original image, this function returns the coordinates or a mask of the
peaks where the dilated image equals the original image.
See also
--------
skimage.feature.corner_peaks
Examples
--------
>>> img1 = np.zeros((7, 7))
>>> img1[3, 4] = 1
>>> img1[3, 2] = 1.5
>>> img1
array([[0. , 0. , 0. , 0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. , 0. , 0. , 0. ],
[0. , 0. , 1.5, 0. , 1. , 0. , 0. ],
[0. , 0. , 0. , 0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. , 0. , 0. , 0. ]])
>>> peak_local_max(img1, min_distance=1)
array([[3, 2],
[3, 4]])
>>> peak_local_max(img1, min_distance=2)
array([[3, 2]])
>>> img2 = np.zeros((20, 20, 20))
>>> img2[10, 10, 10] = 1
>>> peak_local_max(img2, exclude_border=0)
array([[10, 10, 10]])
"""
out = np.zeros_like(image, dtype=np.bool)
threshold_abs = threshold_abs if threshold_abs is not None else image.min()
if isinstance(exclude_border, bool):
exclude_border = (min_distance if exclude_border else 0,) * image.ndim
elif isinstance(exclude_border, int):
if exclude_border < 0:
raise ValueError("`exclude_border` cannot be a negative value")
exclude_border = (exclude_border,) * image.ndim
elif isinstance(exclude_border, tuple):
if len(exclude_border) != image.ndim:
raise ValueError(
"`exclude_border` should have the same length as the "
"dimensionality of the image.")
for exclude in exclude_border:
if not isinstance(exclude, int):
raise ValueError(
"`exclude_border`, when expressed as a tuple, must only "
"contain ints."
)
if exclude < 0:
raise ValueError(
"`exclude_border` cannot contain a negative value")
else:
raise TypeError(
"`exclude_border` must be bool, int, or tuple with the same "
"length as the dimensionality of the image.")
# no peak for a trivial image
if np.all(image == image.flat[0]):
if indices is True:
return np.empty((0, image.ndim), np.int)
else:
return out
# In the case of labels, call ndi on each label
if labels is not None:
label_values = np.unique(labels)
# Reorder label values to have consecutive integers (no gaps)
if np.any(np.diff(label_values) != 1):
mask = labels >= 1
labels[mask] = 1 + rank_order(labels[mask])[0].astype(labels.dtype)
labels = labels.astype(np.int32)
# create a mask for the non-exclude region
inner_mask = _exclude_border(np.ones_like(labels, dtype=bool),
exclude_border)
# For each label, extract a smaller image enclosing the object of
# interest, identify num_peaks_per_label peaks and mark them in
# variable out.
for label_idx, obj in enumerate(ndi.find_objects(labels)):
img_object = image[obj] * (labels[obj] == label_idx + 1)
mask = _get_peak_mask(img_object, min_distance, footprint,
threshold_abs, threshold_rel)
if exclude_border:
# remove peaks fall in the exclude region
mask &= inner_mask[obj]
coordinates = _get_high_intensity_peaks(img_object, mask,
num_peaks_per_label)
nd_indices = tuple(coordinates.T)
mask.fill(False)
mask[nd_indices] = True
out[obj] += mask
if not indices and np.isinf(num_peaks):
return out
coordinates = _get_high_intensity_peaks(image, out, num_peaks)
if indices:
return coordinates
else:
out.fill(False)
nd_indices = tuple(coordinates.T)
out[nd_indices] = True
return out
# Non maximum filter
mask = _get_peak_mask(image, min_distance, footprint, threshold_abs,
threshold_rel)
mask = _exclude_border(mask, exclude_border)
# Select highest intensities (num_peaks)
coordinates = _get_high_intensity_peaks(image, mask, num_peaks)
if indices is True:
return coordinates
else:
nd_indices = tuple(coordinates.T)
out[nd_indices] = True
return out
def _prominent_peaks(image, min_xdistance=1, min_ydistance=1,
threshold=None, num_peaks=np.inf):
"""Return peaks with non-maximum suppression.
Identifies most prominent features separated by certain distances.
Non-maximum suppression with different sizes is applied separately
in the first and second dimension of the image to identify peaks.
Parameters
----------
image : (M, N) ndarray
Input image.
min_xdistance : int
Minimum distance separating features in the x dimension.
min_ydistance : int
Minimum distance separating features in the y dimension.
threshold : float
Minimum intensity of peaks. Default is `0.5 * max(image)`.
num_peaks : int
Maximum number of peaks. When the number of peaks exceeds `num_peaks`,
return `num_peaks` coordinates based on peak intensity.
Returns
-------
intensity, xcoords, ycoords : tuple of array
Peak intensity values, x and y indices.
"""
img = image.copy()
rows, cols = img.shape
if threshold is None:
threshold = 0.5 * np.max(img)
ycoords_size = 2 * min_ydistance + 1
xcoords_size = 2 * min_xdistance + 1
img_max = ndi.maximum_filter1d(img, size=ycoords_size, axis=0,
mode='constant', cval=0)
img_max = ndi.maximum_filter1d(img_max, size=xcoords_size, axis=1,
mode='constant', cval=0)
mask = (img == img_max)
img *= mask
img_t = img > threshold
label_img = measure.label(img_t)
props = measure.regionprops(label_img, img_max)
# Sort the list of peaks by intensity, not left-right, so larger peaks
# in Hough space cannot be arbitrarily suppressed by smaller neighbors
props = sorted(props, key=lambda x: x.max_intensity)[::-1]
coords = np.array([np.round(p.centroid) for p in props], dtype=int)
img_peaks = []
ycoords_peaks = []
xcoords_peaks = []
# relative coordinate grid for local neighbourhood suppression
ycoords_ext, xcoords_ext = np.mgrid[-min_ydistance:min_ydistance + 1,
-min_xdistance:min_xdistance + 1]
for ycoords_idx, xcoords_idx in coords:
accum = img_max[ycoords_idx, xcoords_idx]
if accum > threshold:
# absolute coordinate grid for local neighbourhood suppression
ycoords_nh = ycoords_idx + ycoords_ext
xcoords_nh = xcoords_idx + xcoords_ext
# no reflection for distance neighbourhood
ycoords_in = np.logical_and(ycoords_nh > 0, ycoords_nh < rows)
ycoords_nh = ycoords_nh[ycoords_in]
xcoords_nh = xcoords_nh[ycoords_in]
# reflect xcoords and assume xcoords are continuous,
# e.g. for angles:
# (..., 88, 89, -90, -89, ..., 89, -90, -89, ...)
xcoords_low = xcoords_nh < 0
ycoords_nh[xcoords_low] = rows - ycoords_nh[xcoords_low]
xcoords_nh[xcoords_low] += cols
xcoords_high = xcoords_nh >= cols
ycoords_nh[xcoords_high] = rows - ycoords_nh[xcoords_high]
xcoords_nh[xcoords_high] -= cols
# suppress neighbourhood
img_max[ycoords_nh, xcoords_nh] = 0
# add current feature to peaks
img_peaks.append(accum)
ycoords_peaks.append(ycoords_idx)
xcoords_peaks.append(xcoords_idx)
img_peaks = np.array(img_peaks)
ycoords_peaks = np.array(ycoords_peaks)
xcoords_peaks = np.array(xcoords_peaks)
if num_peaks < len(img_peaks):
idx_maxsort = np.argsort(img_peaks)[::-1][:num_peaks]
img_peaks = img_peaks[idx_maxsort]
ycoords_peaks = ycoords_peaks[idx_maxsort]
xcoords_peaks = xcoords_peaks[idx_maxsort]
return img_peaks, xcoords_peaks, ycoords_peaks