Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/exposure/tests/test_exposure.py

763 lines
25 KiB
Python
Raw Permalink Normal View History

import warnings
import numpy as np
import pytest
from skimage import util
from skimage import data
from skimage import exposure
from skimage.exposure.exposure import intensity_range
from skimage.color import rgb2gray
from skimage.util.dtype import dtype_range
from skimage._shared._warnings import expected_warnings
from skimage._shared import testing
from skimage._shared.testing import (assert_array_equal,
assert_array_almost_equal,
assert_equal,
assert_almost_equal)
# Test integer histograms
# =======================
def test_wrong_source_range():
im = np.array([-1, 100], dtype=np.int8)
with testing.raises(ValueError):
frequencies, bin_centers = exposure.histogram(im, source_range='foobar')
def test_negative_overflow():
im = np.array([-1, 100], dtype=np.int8)
frequencies, bin_centers = exposure.histogram(im)
assert_array_equal(bin_centers, np.arange(-1, 101))
assert frequencies[0] == 1
assert frequencies[-1] == 1
assert_array_equal(frequencies[1:-1], 0)
def test_all_negative_image():
im = np.array([-100, -1], dtype=np.int8)
frequencies, bin_centers = exposure.histogram(im)
assert_array_equal(bin_centers, np.arange(-100, 0))
assert frequencies[0] == 1
assert frequencies[-1] == 1
assert_array_equal(frequencies[1:-1], 0)
def test_int_range_image():
im = np.array([10, 100], dtype=np.int8)
frequencies, bin_centers = exposure.histogram(im)
assert_equal(len(bin_centers), len(frequencies))
assert_equal(bin_centers[0], 10)
assert_equal(bin_centers[-1], 100)
def test_peak_uint_range_dtype():
im = np.array([10, 100], dtype=np.uint8)
frequencies, bin_centers = exposure.histogram(im, source_range='dtype')
assert_array_equal(bin_centers, np.arange(0, 256))
assert_equal(frequencies[10], 1)
assert_equal(frequencies[100], 1)
assert_equal(frequencies[101], 0)
assert_equal(frequencies.shape, (256,))
def test_peak_int_range_dtype():
im = np.array([10, 100], dtype=np.int8)
frequencies, bin_centers = exposure.histogram(im, source_range='dtype')
assert_array_equal(bin_centers, np.arange(-128, 128))
assert_equal(frequencies[128+10], 1)
assert_equal(frequencies[128+100], 1)
assert_equal(frequencies[128+101], 0)
assert_equal(frequencies.shape, (256,))
def test_flat_uint_range_dtype():
im = np.linspace(0, 255, 256, dtype=np.uint8)
frequencies, bin_centers = exposure.histogram(im, source_range='dtype')
assert_array_equal(bin_centers, np.arange(0, 256))
assert_equal(frequencies.shape, (256,))
def test_flat_int_range_dtype():
im = np.linspace(-128, 128, 256, dtype=np.int8)
frequencies, bin_centers = exposure.histogram(im, source_range='dtype')
assert_array_equal(bin_centers, np.arange(-128, 128))
assert_equal(frequencies.shape, (256,))
def test_peak_float_out_of_range_image():
im = np.array([10, 100], dtype=np.float16)
frequencies, bin_centers = exposure.histogram(im, nbins=90)
# offset values by 0.5 for float...
assert_array_equal(bin_centers, np.arange(10, 100) + 0.5)
def test_peak_float_out_of_range_dtype():
im = np.array([10, 100], dtype=np.float16)
nbins = 10
frequencies, bin_centers = exposure.histogram(im, nbins=nbins, source_range='dtype')
assert_almost_equal(np.min(bin_centers), -0.9, 3)
assert_almost_equal(np.max(bin_centers), 0.9, 3)
assert_equal(len(bin_centers), 10)
def test_normalize():
im = np.array([0, 255, 255], dtype=np.uint8)
frequencies, bin_centers = exposure.histogram(im, source_range='dtype',
normalize=False)
expected = np.zeros(256)
expected[0] = 1
expected[-1] = 2
assert_equal(frequencies, expected)
frequencies, bin_centers = exposure.histogram(im, source_range='dtype',
normalize=True)
expected /= 3.
assert_equal(frequencies, expected)
# Test histogram equalization
# ===========================
np.random.seed(0)
test_img_int = data.camera()
# squeeze image intensities to lower image contrast
test_img = util.img_as_float(test_img_int)
test_img = exposure.rescale_intensity(test_img / 5. + 100)
def test_equalize_uint8_approx():
"""Check integer bins used for uint8 images."""
img_eq0 = exposure.equalize_hist(test_img_int)
img_eq1 = exposure.equalize_hist(test_img_int, nbins=3)
np.testing.assert_allclose(img_eq0, img_eq1)
def test_equalize_ubyte():
img = util.img_as_ubyte(test_img)
img_eq = exposure.equalize_hist(img)
cdf, bin_edges = exposure.cumulative_distribution(img_eq)
check_cdf_slope(cdf)
def test_equalize_float():
img = util.img_as_float(test_img)
img_eq = exposure.equalize_hist(img)
cdf, bin_edges = exposure.cumulative_distribution(img_eq)
check_cdf_slope(cdf)
def test_equalize_masked():
img = util.img_as_float(test_img)
mask = np.zeros(test_img.shape)
mask[50:150, 50:250] = 1
img_mask_eq = exposure.equalize_hist(img, mask=mask)
img_eq = exposure.equalize_hist(img)
cdf, bin_edges = exposure.cumulative_distribution(img_mask_eq)
check_cdf_slope(cdf)
assert not (img_eq == img_mask_eq).all()
def check_cdf_slope(cdf):
"""Slope of cdf which should equal 1 for an equalized histogram."""
norm_intensity = np.linspace(0, 1, len(cdf))
slope, intercept = np.polyfit(norm_intensity, cdf, 1)
assert 0.9 < slope < 1.1
# Test intensity range
# ====================
@testing.parametrize("test_input,expected", [
('image', [0, 1]),
('dtype', [0, 255]),
((10, 20), [10, 20])
])
def test_intensity_range_uint8(test_input, expected):
image = np.array([0, 1], dtype=np.uint8)
out = intensity_range(image, range_values=test_input)
assert_array_equal(out, expected)
@testing.parametrize("test_input,expected", [
('image', [0.1, 0.2]),
('dtype', [-1, 1]),
((0.3, 0.4), [0.3, 0.4])
])
def test_intensity_range_float(test_input, expected):
image = np.array([0.1, 0.2], dtype=np.float64)
out = intensity_range(image, range_values=test_input)
assert_array_equal(out, expected)
def test_intensity_range_clipped_float():
image = np.array([0.1, 0.2], dtype=np.float64)
out = intensity_range(image, range_values='dtype', clip_negative=True)
assert_array_equal(out, (0, 1))
# Test rescale intensity
# ======================
uint10_max = 2**10 - 1
uint12_max = 2**12 - 1
uint14_max = 2**14 - 1
uint16_max = 2**16 - 1
def test_rescale_stretch():
image = np.array([51, 102, 153], dtype=np.uint8)
out = exposure.rescale_intensity(image)
assert out.dtype == np.uint8
assert_array_almost_equal(out, [0, 127, 255])
def test_rescale_shrink():
image = np.array([51., 102., 153.])
out = exposure.rescale_intensity(image)
assert_array_almost_equal(out, [0, 0.5, 1])
def test_rescale_in_range():
image = np.array([51., 102., 153.])
out = exposure.rescale_intensity(image, in_range=(0, 255))
assert_array_almost_equal(out, [0.2, 0.4, 0.6])
def test_rescale_in_range_clip():
image = np.array([51., 102., 153.])
out = exposure.rescale_intensity(image, in_range=(0, 102))
assert_array_almost_equal(out, [0.5, 1, 1])
def test_rescale_out_range():
"""Check that output range is correct.
.. versionchanged:: 0.17
This function used to return dtype matching the input dtype. It now
matches the output.
"""
image = np.array([-10, 0, 10], dtype=np.int8)
out = exposure.rescale_intensity(image, out_range=(0, 127))
assert out.dtype == np.float_
assert_array_almost_equal(out, [0, 63.5, 127])
def test_rescale_named_in_range():
image = np.array([0, uint10_max, uint10_max + 100], dtype=np.uint16)
out = exposure.rescale_intensity(image, in_range='uint10')
assert_array_almost_equal(out, [0, uint16_max, uint16_max])
def test_rescale_named_out_range():
image = np.array([0, uint16_max], dtype=np.uint16)
out = exposure.rescale_intensity(image, out_range='uint10')
assert_array_almost_equal(out, [0, uint10_max])
def test_rescale_uint12_limits():
image = np.array([0, uint16_max], dtype=np.uint16)
out = exposure.rescale_intensity(image, out_range='uint12')
assert_array_almost_equal(out, [0, uint12_max])
def test_rescale_uint14_limits():
image = np.array([0, uint16_max], dtype=np.uint16)
out = exposure.rescale_intensity(image, out_range='uint14')
assert_array_almost_equal(out, [0, uint14_max])
def test_rescale_all_zeros():
image = np.zeros((2, 2), dtype=np.uint8)
out = exposure.rescale_intensity(image)
assert ~np.isnan(out).all()
assert_array_almost_equal(out, image)
def test_rescale_constant():
image = np.array([130, 130], dtype=np.uint16)
out = exposure.rescale_intensity(image, out_range=(0, 127))
assert_array_almost_equal(out, [127, 127])
def test_rescale_same_values():
image = np.ones((2, 2))
out = exposure.rescale_intensity(image)
assert ~np.isnan(out).all()
assert_array_almost_equal(out, image)
@pytest.mark.parametrize(
"in_range,out_range", [("image", "dtype"),
("dtype", "image")]
)
def test_rescale_nan_warning(in_range, out_range):
image = np.arange(12, dtype=float).reshape(3, 4)
image[1, 1] = np.nan
msg = (
r"One or more intensity levels are NaN\."
r" Rescaling will broadcast NaN to the full image\."
)
# 2019/11/10 Passing NaN to np.clip raises a DeprecationWarning for
# versions above 1.17
# TODO: Remove once NumPy removes this DeprecationWarning
numpy_warning_1_17_plus = (
r"Passing `np.nan` to mean no clipping in np.clip "
r"has always been unreliable|\A\Z"
)
# 2019/12/06 Passing NaN to np.min and np.max raises a RuntimeWarning for
# NumPy < 1.16
# TODO: Remove once minimal required NumPy version is 1.16
numpy_warning_smaller_1_16 = r"invalid value encountered in reduce|\A\Z"
with expected_warnings(
[msg, numpy_warning_1_17_plus, numpy_warning_smaller_1_16]
):
exposure.rescale_intensity(image, in_range, out_range)
@pytest.mark.parametrize(
"out_range, out_dtype", [
('uint8', np.uint8),
('uint10', np.uint16),
('uint12', np.uint16),
('uint16', np.uint16),
('float', np.float_),
]
)
def test_rescale_output_dtype(out_range, out_dtype):
image = np.array([-128, 0, 127], dtype=np.int8)
output_image = exposure.rescale_intensity(image, out_range=out_range)
assert output_image.dtype == out_dtype
def test_rescale_no_overflow():
image = np.array([-128, 0, 127], dtype=np.int8)
output_image = exposure.rescale_intensity(image, out_range=np.uint8)
testing.assert_array_equal(output_image, [0, 128, 255])
assert output_image.dtype == np.uint8
def test_rescale_float_output():
image = np.array([-128, 0, 127], dtype=np.int8)
output_image = exposure.rescale_intensity(image, out_range=(0, 255))
testing.assert_array_equal(output_image, [0, 128, 255])
assert output_image.dtype == np.float_
def test_rescale_raises_on_incorrect_out_range():
image = np.array([-128, 0, 127], dtype=np.int8)
with testing.raises(ValueError):
_ = exposure.rescale_intensity(image, out_range='flat')
# Test adaptive histogram equalization
# ====================================
def test_adapthist_grayscale():
"""Test a grayscale float image
"""
img = util.img_as_float(data.astronaut())
img = rgb2gray(img)
img = np.dstack((img, img, img))
adapted = exposure.equalize_adapthist(img, kernel_size=(57, 51),
clip_limit=0.01, nbins=128)
assert img.shape == adapted.shape
assert_almost_equal(peak_snr(img, adapted), 100.140, 3)
assert_almost_equal(norm_brightness_err(img, adapted), 0.0529, 3)
def test_adapthist_color():
"""Test an RGB color uint16 image
"""
img = util.img_as_uint(data.astronaut())
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
hist, bin_centers = exposure.histogram(img)
assert len(w) > 0
adapted = exposure.equalize_adapthist(img, clip_limit=0.01)
assert adapted.min() == 0
assert adapted.max() == 1.0
assert img.shape == adapted.shape
full_scale = exposure.rescale_intensity(img)
assert_almost_equal(peak_snr(full_scale, adapted), 109.393, 1)
assert_almost_equal(norm_brightness_err(full_scale, adapted), 0.02, 2)
return data, adapted
def test_adapthist_alpha():
"""Test an RGBA color image
"""
img = util.img_as_float(data.astronaut())
alpha = np.ones((img.shape[0], img.shape[1]), dtype=float)
img = np.dstack((img, alpha))
adapted = exposure.equalize_adapthist(img)
assert adapted.shape != img.shape
img = img[:, :, :3]
full_scale = exposure.rescale_intensity(img)
assert img.shape == adapted.shape
assert_almost_equal(peak_snr(full_scale, adapted), 109.393, 2)
assert_almost_equal(norm_brightness_err(full_scale, adapted), 0.0248, 3)
def test_adapthist_grayscale_Nd():
"""
Test for n-dimensional consistency with float images
Note: Currently if img.ndim == 3, img.shape[2] > 4 must hold for the image
not to be interpreted as a color image by @adapt_rgb
"""
# take 2d image, subsample and stack it
img = util.img_as_float(data.astronaut())
img = rgb2gray(img)
a = 15
img2d = util.img_as_float(img[0:-1:a, 0:-1:a])
img3d = np.array([img2d] * (img.shape[0] // a))
# apply CLAHE
adapted2d = exposure.equalize_adapthist(img2d,
kernel_size=5,
clip_limit=0.05)
adapted3d = exposure.equalize_adapthist(img3d,
kernel_size=5,
clip_limit=0.05)
# check that dimensions of input and output match
assert img2d.shape == adapted2d.shape
assert img3d.shape == adapted3d.shape
# check that the result from the stack of 2d images is similar
# to the underlying 2d image
assert np.mean(np.abs(adapted2d
- adapted3d[adapted3d.shape[0] // 2])) < 0.02
def test_adapthist_constant():
"""Test constant image, float and uint
"""
img = np.zeros((8, 8))
img += 2
img = img.astype(np.uint16)
adapted = exposure.equalize_adapthist(img, 3)
assert np.min(adapted) == np.max(adapted)
img = np.zeros((8, 8))
img += 0.1
img = img.astype(np.float64)
adapted = exposure.equalize_adapthist(img, 3)
assert np.min(adapted) == np.max(adapted)
def test_adapthist_borders():
"""Test border processing
"""
img = rgb2gray(util.img_as_float(data.astronaut()))
# maximize difference between orig and processed img
img /= 100.
img[img.shape[0] // 2, img.shape[1] // 2] = 1.
# check borders are processed for different kernel sizes
border_index = -1
for kernel_size in range(51, 71, 2):
adapted = exposure.equalize_adapthist(img, kernel_size, clip_limit=0.5)
# Check last columns are processed
assert norm_brightness_err(adapted[:, border_index],
img[:, border_index]) > 0.1
# Check last rows are processed
assert norm_brightness_err(adapted[border_index, :],
img[border_index, :]) > 0.1
def test_adapthist_clip_limit():
img_u = data.moon()
img_f = util.img_as_float(img_u)
# uint8 input
img_clahe = exposure.equalize_adapthist(img_u, clip_limit=1)
assert_array_equal(img_f, img_clahe)
# float64 input
img_clahe = exposure.equalize_adapthist(img_f, clip_limit=1)
assert_array_equal(img_f, img_clahe)
def peak_snr(img1, img2):
"""Peak signal to noise ratio of two images
Parameters
----------
img1 : array-like
img2 : array-like
Returns
-------
peak_snr : float
Peak signal to noise ratio
"""
if img1.ndim == 3:
img1, img2 = rgb2gray(img1.copy()), rgb2gray(img2.copy())
img1 = util.img_as_float(img1)
img2 = util.img_as_float(img2)
mse = 1. / img1.size * np.square(img1 - img2).sum()
_, max_ = dtype_range[img1.dtype.type]
return 20 * np.log(max_ / mse)
def norm_brightness_err(img1, img2):
"""Normalized Absolute Mean Brightness Error between two images
Parameters
----------
img1 : array-like
img2 : array-like
Returns
-------
norm_brightness_error : float
Normalized absolute mean brightness error
"""
if img1.ndim == 3:
img1, img2 = rgb2gray(img1), rgb2gray(img2)
ambe = np.abs(img1.mean() - img2.mean())
nbe = ambe / dtype_range[img1.dtype.type][1]
return nbe
# Test Gamma Correction
# =====================
def test_adjust_gamma_1x1_shape():
"""Check that the shape is maintained"""
img = np.ones([1,1])
result = exposure.adjust_gamma(img, 1.5)
assert img.shape == result.shape
def test_adjust_gamma_one():
"""Same image should be returned for gamma equal to one"""
image = np.random.uniform(0, 255, (8, 8))
result = exposure.adjust_gamma(image, 1)
assert_array_equal(result, image)
def test_adjust_gamma_zero():
"""White image should be returned for gamma equal to zero"""
image = np.random.uniform(0, 255, (8, 8))
result = exposure.adjust_gamma(image, 0)
dtype = image.dtype.type
assert_array_equal(result, dtype_range[dtype][1])
def test_adjust_gamma_less_one():
"""Verifying the output with expected results for gamma
correction with gamma equal to half"""
image = np.arange(0, 255, 4, np.uint8).reshape((8, 8))
expected = np.array([
[ 0, 31, 45, 55, 63, 71, 78, 84],
[ 90, 95, 100, 105, 110, 115, 119, 123],
[127, 131, 135, 139, 142, 146, 149, 153],
[156, 159, 162, 165, 168, 171, 174, 177],
[180, 183, 186, 188, 191, 194, 196, 199],
[201, 204, 206, 209, 211, 214, 216, 218],
[221, 223, 225, 228, 230, 232, 234, 236],
[238, 241, 243, 245, 247, 249, 251, 253]], dtype=np.uint8)
result = exposure.adjust_gamma(image, 0.5)
assert_array_equal(result, expected)
def test_adjust_gamma_greater_one():
"""Verifying the output with expected results for gamma
correction with gamma equal to two"""
image = np.arange(0, 255, 4, np.uint8).reshape((8, 8))
expected = np.array([
[ 0, 0, 0, 0, 1, 1, 2, 3],
[ 4, 5, 6, 7, 9, 10, 12, 14],
[ 16, 18, 20, 22, 25, 27, 30, 33],
[ 36, 39, 42, 45, 49, 52, 56, 60],
[ 64, 68, 72, 76, 81, 85, 90, 95],
[100, 105, 110, 116, 121, 127, 132, 138],
[144, 150, 156, 163, 169, 176, 182, 189],
[196, 203, 211, 218, 225, 233, 241, 249]], dtype=np.uint8)
result = exposure.adjust_gamma(image, 2)
assert_array_equal(result, expected)
def test_adjust_gamma_neggative():
image = np.arange(0, 255, 4, np.uint8).reshape((8, 8))
with testing.raises(ValueError):
exposure.adjust_gamma(image, -1)
# Test Logarithmic Correction
# ===========================
def test_adjust_log_1x1_shape():
"""Check that the shape is maintained"""
img = np.ones([1, 1])
result = exposure.adjust_log(img, 1)
assert img.shape == result.shape
def test_adjust_log():
"""Verifying the output with expected results for logarithmic
correction with multiplier constant multiplier equal to unity"""
image = np.arange(0, 255, 4, np.uint8).reshape((8, 8))
expected = np.array([
[ 0, 5, 11, 16, 22, 27, 33, 38],
[ 43, 48, 53, 58, 63, 68, 73, 77],
[ 82, 86, 91, 95, 100, 104, 109, 113],
[117, 121, 125, 129, 133, 137, 141, 145],
[149, 153, 157, 160, 164, 168, 172, 175],
[179, 182, 186, 189, 193, 196, 199, 203],
[206, 209, 213, 216, 219, 222, 225, 228],
[231, 234, 238, 241, 244, 246, 249, 252]], dtype=np.uint8)
result = exposure.adjust_log(image, 1)
assert_array_equal(result, expected)
def test_adjust_inv_log():
"""Verifying the output with expected results for inverse logarithmic
correction with multiplier constant multiplier equal to unity"""
image = np.arange(0, 255, 4, np.uint8).reshape((8, 8))
expected = np.array([
[ 0, 2, 5, 8, 11, 14, 17, 20],
[ 23, 26, 29, 32, 35, 38, 41, 45],
[ 48, 51, 55, 58, 61, 65, 68, 72],
[ 76, 79, 83, 87, 90, 94, 98, 102],
[106, 110, 114, 118, 122, 126, 130, 134],
[138, 143, 147, 151, 156, 160, 165, 170],
[174, 179, 184, 188, 193, 198, 203, 208],
[213, 218, 224, 229, 234, 239, 245, 250]], dtype=np.uint8)
result = exposure.adjust_log(image, 1, True)
assert_array_equal(result, expected)
# Test Sigmoid Correction
# =======================
def test_adjust_sigmoid_1x1_shape():
"""Check that the shape is maintained"""
img = np.ones([1, 1])
result = exposure.adjust_sigmoid(img, 1, 5)
assert img.shape == result.shape
def test_adjust_sigmoid_cutoff_one():
"""Verifying the output with expected results for sigmoid correction
with cutoff equal to one and gain of 5"""
image = np.arange(0, 255, 4, np.uint8).reshape((8, 8))
expected = np.array([
[ 1, 1, 1, 2, 2, 2, 2, 2],
[ 3, 3, 3, 4, 4, 4, 5, 5],
[ 5, 6, 6, 7, 7, 8, 9, 10],
[ 10, 11, 12, 13, 14, 15, 16, 18],
[ 19, 20, 22, 24, 25, 27, 29, 32],
[ 34, 36, 39, 41, 44, 47, 50, 54],
[ 57, 61, 64, 68, 72, 76, 80, 85],
[ 89, 94, 99, 104, 108, 113, 118, 123]], dtype=np.uint8)
result = exposure.adjust_sigmoid(image, 1, 5)
assert_array_equal(result, expected)
def test_adjust_sigmoid_cutoff_zero():
"""Verifying the output with expected results for sigmoid correction
with cutoff equal to zero and gain of 10"""
image = np.arange(0, 255, 4, np.uint8).reshape((8, 8))
expected = np.array([
[127, 137, 147, 156, 166, 175, 183, 191],
[198, 205, 211, 216, 221, 225, 229, 232],
[235, 238, 240, 242, 244, 245, 247, 248],
[249, 250, 250, 251, 251, 252, 252, 253],
[253, 253, 253, 253, 254, 254, 254, 254],
[254, 254, 254, 254, 254, 254, 254, 254],
[254, 254, 254, 254, 254, 254, 254, 254],
[254, 254, 254, 254, 254, 254, 254, 254]], dtype=np.uint8)
result = exposure.adjust_sigmoid(image, 0, 10)
assert_array_equal(result, expected)
def test_adjust_sigmoid_cutoff_half():
"""Verifying the output with expected results for sigmoid correction
with cutoff equal to half and gain of 10"""
image = np.arange(0, 255, 4, np.uint8).reshape((8, 8))
expected = np.array([
[ 1, 1, 2, 2, 3, 3, 4, 5],
[ 5, 6, 7, 9, 10, 12, 14, 16],
[ 19, 22, 25, 29, 34, 39, 44, 50],
[ 57, 64, 72, 80, 89, 99, 108, 118],
[128, 138, 148, 158, 167, 176, 184, 192],
[199, 205, 211, 217, 221, 226, 229, 233],
[236, 238, 240, 242, 244, 246, 247, 248],
[249, 250, 250, 251, 251, 252, 252, 253]], dtype=np.uint8)
result = exposure.adjust_sigmoid(image, 0.5, 10)
assert_array_equal(result, expected)
def test_adjust_inv_sigmoid_cutoff_half():
"""Verifying the output with expected results for inverse sigmoid
correction with cutoff equal to half and gain of 10"""
image = np.arange(0, 255, 4, np.uint8).reshape((8, 8))
expected = np.array([
[253, 253, 252, 252, 251, 251, 250, 249],
[249, 248, 247, 245, 244, 242, 240, 238],
[235, 232, 229, 225, 220, 215, 210, 204],
[197, 190, 182, 174, 165, 155, 146, 136],
[126, 116, 106, 96, 87, 78, 70, 62],
[ 55, 49, 43, 37, 33, 28, 25, 21],
[ 18, 16, 14, 12, 10, 8, 7, 6],
[ 5, 4, 4, 3, 3, 2, 2, 1]], dtype=np.uint8)
result = exposure.adjust_sigmoid(image, 0.5, 10, True)
assert_array_equal(result, expected)
def test_negative():
image = np.arange(-10, 245, 4).reshape((8, 8)).astype(np.double)
with testing.raises(ValueError):
exposure.adjust_gamma(image)
def test_is_low_contrast():
image = np.linspace(0, 0.04, 100)
assert exposure.is_low_contrast(image)
image[-1] = 1
assert exposure.is_low_contrast(image)
assert not exposure.is_low_contrast(image, upper_percentile=100)
image = (image * 255).astype(np.uint8)
assert exposure.is_low_contrast(image)
assert not exposure.is_low_contrast(image, upper_percentile=100)
image = (image.astype(np.uint16)) * 2**8
assert exposure.is_low_contrast(image)
assert not exposure.is_low_contrast(image, upper_percentile=100)
# Test Dask Compatibility
# =======================
def test_dask_histogram():
pytest.importorskip('dask', reason="dask python library is not installed")
import dask.array as da
dask_array = da.from_array(np.array([[0, 1], [1, 2]]), chunks=(1, 2))
output_hist, output_bins = exposure.histogram(dask_array)
expected_bins = [0, 1, 2]
expected_hist = [1, 2, 1]
assert np.allclose(expected_bins, output_bins)
assert np.allclose(expected_hist, output_hist)