Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/scipy/integrate/tests/test_quadpack.py

412 lines
14 KiB
Python
Raw Permalink Normal View History

import sys
import math
import numpy as np
from numpy import sqrt, cos, sin, arctan, exp, log, pi, Inf
from numpy.testing import (assert_,
assert_allclose, assert_array_less, assert_almost_equal)
import pytest
from scipy.integrate import quad, dblquad, tplquad, nquad
from scipy._lib._ccallback import LowLevelCallable
import ctypes
import ctypes.util
from scipy._lib._ccallback_c import sine_ctypes
import scipy.integrate._test_multivariate as clib_test
def assert_quad(value_and_err, tabled_value, errTol=1.5e-8):
value, err = value_and_err
assert_allclose(value, tabled_value, atol=err, rtol=0)
if errTol is not None:
assert_array_less(err, errTol)
def get_clib_test_routine(name, restype, *argtypes):
ptr = getattr(clib_test, name)
return ctypes.cast(ptr, ctypes.CFUNCTYPE(restype, *argtypes))
class TestCtypesQuad(object):
def setup_method(self):
if sys.platform == 'win32':
files = ['api-ms-win-crt-math-l1-1-0.dll']
elif sys.platform == 'darwin':
files = ['libm.dylib']
else:
files = ['libm.so', 'libm.so.6']
for file in files:
try:
self.lib = ctypes.CDLL(file)
break
except OSError:
pass
else:
# This test doesn't work on some Linux platforms (Fedora for
# example) that put an ld script in libm.so - see gh-5370
pytest.skip("Ctypes can't import libm.so")
restype = ctypes.c_double
argtypes = (ctypes.c_double,)
for name in ['sin', 'cos', 'tan']:
func = getattr(self.lib, name)
func.restype = restype
func.argtypes = argtypes
def test_typical(self):
assert_quad(quad(self.lib.sin, 0, 5), quad(math.sin, 0, 5)[0])
assert_quad(quad(self.lib.cos, 0, 5), quad(math.cos, 0, 5)[0])
assert_quad(quad(self.lib.tan, 0, 1), quad(math.tan, 0, 1)[0])
def test_ctypes_sine(self):
quad(LowLevelCallable(sine_ctypes), 0, 1)
def test_ctypes_variants(self):
sin_0 = get_clib_test_routine('_sin_0', ctypes.c_double,
ctypes.c_double, ctypes.c_void_p)
sin_1 = get_clib_test_routine('_sin_1', ctypes.c_double,
ctypes.c_int, ctypes.POINTER(ctypes.c_double),
ctypes.c_void_p)
sin_2 = get_clib_test_routine('_sin_2', ctypes.c_double,
ctypes.c_double)
sin_3 = get_clib_test_routine('_sin_3', ctypes.c_double,
ctypes.c_int, ctypes.POINTER(ctypes.c_double))
sin_4 = get_clib_test_routine('_sin_3', ctypes.c_double,
ctypes.c_int, ctypes.c_double)
all_sigs = [sin_0, sin_1, sin_2, sin_3, sin_4]
legacy_sigs = [sin_2, sin_4]
legacy_only_sigs = [sin_4]
# LowLevelCallables work for new signatures
for j, func in enumerate(all_sigs):
callback = LowLevelCallable(func)
if func in legacy_only_sigs:
pytest.raises(ValueError, quad, callback, 0, pi)
else:
assert_allclose(quad(callback, 0, pi)[0], 2.0)
# Plain ctypes items work only for legacy signatures
for j, func in enumerate(legacy_sigs):
if func in legacy_sigs:
assert_allclose(quad(func, 0, pi)[0], 2.0)
else:
pytest.raises(ValueError, quad, func, 0, pi)
class TestMultivariateCtypesQuad(object):
def setup_method(self):
restype = ctypes.c_double
argtypes = (ctypes.c_int, ctypes.c_double)
for name in ['_multivariate_typical', '_multivariate_indefinite',
'_multivariate_sin']:
func = get_clib_test_routine(name, restype, *argtypes)
setattr(self, name, func)
def test_typical(self):
# 1) Typical function with two extra arguments:
assert_quad(quad(self._multivariate_typical, 0, pi, (2, 1.8)),
0.30614353532540296487)
def test_indefinite(self):
# 2) Infinite integration limits --- Euler's constant
assert_quad(quad(self._multivariate_indefinite, 0, Inf),
0.577215664901532860606512)
def test_threadsafety(self):
# Ensure multivariate ctypes are threadsafe
def threadsafety(y):
return y + quad(self._multivariate_sin, 0, 1)[0]
assert_quad(quad(threadsafety, 0, 1), 0.9596976941318602)
class TestQuad(object):
def test_typical(self):
# 1) Typical function with two extra arguments:
def myfunc(x, n, z): # Bessel function integrand
return cos(n*x-z*sin(x))/pi
assert_quad(quad(myfunc, 0, pi, (2, 1.8)), 0.30614353532540296487)
def test_indefinite(self):
# 2) Infinite integration limits --- Euler's constant
def myfunc(x): # Euler's constant integrand
return -exp(-x)*log(x)
assert_quad(quad(myfunc, 0, Inf), 0.577215664901532860606512)
def test_singular(self):
# 3) Singular points in region of integration.
def myfunc(x):
if 0 < x < 2.5:
return sin(x)
elif 2.5 <= x <= 5.0:
return exp(-x)
else:
return 0.0
assert_quad(quad(myfunc, 0, 10, points=[2.5, 5.0]),
1 - cos(2.5) + exp(-2.5) - exp(-5.0))
def test_sine_weighted_finite(self):
# 4) Sine weighted integral (finite limits)
def myfunc(x, a):
return exp(a*(x-1))
ome = 2.0**3.4
assert_quad(quad(myfunc, 0, 1, args=20, weight='sin', wvar=ome),
(20*sin(ome)-ome*cos(ome)+ome*exp(-20))/(20**2 + ome**2))
def test_sine_weighted_infinite(self):
# 5) Sine weighted integral (infinite limits)
def myfunc(x, a):
return exp(-x*a)
a = 4.0
ome = 3.0
assert_quad(quad(myfunc, 0, Inf, args=a, weight='sin', wvar=ome),
ome/(a**2 + ome**2))
def test_cosine_weighted_infinite(self):
# 6) Cosine weighted integral (negative infinite limits)
def myfunc(x, a):
return exp(x*a)
a = 2.5
ome = 2.3
assert_quad(quad(myfunc, -Inf, 0, args=a, weight='cos', wvar=ome),
a/(a**2 + ome**2))
def test_algebraic_log_weight(self):
# 6) Algebraic-logarithmic weight.
def myfunc(x, a):
return 1/(1+x+2**(-a))
a = 1.5
assert_quad(quad(myfunc, -1, 1, args=a, weight='alg',
wvar=(-0.5, -0.5)),
pi/sqrt((1+2**(-a))**2 - 1))
def test_cauchypv_weight(self):
# 7) Cauchy prinicpal value weighting w(x) = 1/(x-c)
def myfunc(x, a):
return 2.0**(-a)/((x-1)**2+4.0**(-a))
a = 0.4
tabledValue = ((2.0**(-0.4)*log(1.5) -
2.0**(-1.4)*log((4.0**(-a)+16) / (4.0**(-a)+1)) -
arctan(2.0**(a+2)) -
arctan(2.0**a)) /
(4.0**(-a) + 1))
assert_quad(quad(myfunc, 0, 5, args=0.4, weight='cauchy', wvar=2.0),
tabledValue, errTol=1.9e-8)
def test_b_less_than_a(self):
def f(x, p, q):
return p * np.exp(-q*x)
val_1, err_1 = quad(f, 0, np.inf, args=(2, 3))
val_2, err_2 = quad(f, np.inf, 0, args=(2, 3))
assert_allclose(val_1, -val_2, atol=max(err_1, err_2))
def test_b_less_than_a_2(self):
def f(x, s):
return np.exp(-x**2 / 2 / s) / np.sqrt(2.*s)
val_1, err_1 = quad(f, -np.inf, np.inf, args=(2,))
val_2, err_2 = quad(f, np.inf, -np.inf, args=(2,))
assert_allclose(val_1, -val_2, atol=max(err_1, err_2))
def test_b_less_than_a_3(self):
def f(x):
return 1.0
val_1, err_1 = quad(f, 0, 1, weight='alg', wvar=(0, 0))
val_2, err_2 = quad(f, 1, 0, weight='alg', wvar=(0, 0))
assert_allclose(val_1, -val_2, atol=max(err_1, err_2))
def test_b_less_than_a_full_output(self):
def f(x):
return 1.0
res_1 = quad(f, 0, 1, weight='alg', wvar=(0, 0), full_output=True)
res_2 = quad(f, 1, 0, weight='alg', wvar=(0, 0), full_output=True)
err = max(res_1[1], res_2[1])
assert_allclose(res_1[0], -res_2[0], atol=err)
def test_double_integral(self):
# 8) Double Integral test
def simpfunc(y, x): # Note order of arguments.
return x+y
a, b = 1.0, 2.0
assert_quad(dblquad(simpfunc, a, b, lambda x: x, lambda x: 2*x),
5/6.0 * (b**3.0-a**3.0))
def test_double_integral2(self):
def func(x0, x1, t0, t1):
return x0 + x1 + t0 + t1
g = lambda x: x
h = lambda x: 2 * x
args = 1, 2
assert_quad(dblquad(func, 1, 2, g, h, args=args),35./6 + 9*.5)
def test_double_integral3(self):
def func(x0, x1):
return x0 + x1 + 1 + 2
assert_quad(dblquad(func, 1, 2, 1, 2),6.)
def test_triple_integral(self):
# 9) Triple Integral test
def simpfunc(z, y, x, t): # Note order of arguments.
return (x+y+z)*t
a, b = 1.0, 2.0
assert_quad(tplquad(simpfunc, a, b,
lambda x: x, lambda x: 2*x,
lambda x, y: x - y, lambda x, y: x + y,
(2.,)),
2*8/3.0 * (b**4.0 - a**4.0))
class TestNQuad(object):
def test_fixed_limits(self):
def func1(x0, x1, x2, x3):
val = (x0**2 + x1*x2 - x3**3 + np.sin(x0) +
(1 if (x0 - 0.2*x3 - 0.5 - 0.25*x1 > 0) else 0))
return val
def opts_basic(*args):
return {'points': [0.2*args[2] + 0.5 + 0.25*args[0]]}
res = nquad(func1, [[0, 1], [-1, 1], [.13, .8], [-.15, 1]],
opts=[opts_basic, {}, {}, {}], full_output=True)
assert_quad(res[:-1], 1.5267454070738635)
assert_(res[-1]['neval'] > 0 and res[-1]['neval'] < 4e5)
def test_variable_limits(self):
scale = .1
def func2(x0, x1, x2, x3, t0, t1):
val = (x0*x1*x3**2 + np.sin(x2) + 1 +
(1 if x0 + t1*x1 - t0 > 0 else 0))
return val
def lim0(x1, x2, x3, t0, t1):
return [scale * (x1**2 + x2 + np.cos(x3)*t0*t1 + 1) - 1,
scale * (x1**2 + x2 + np.cos(x3)*t0*t1 + 1) + 1]
def lim1(x2, x3, t0, t1):
return [scale * (t0*x2 + t1*x3) - 1,
scale * (t0*x2 + t1*x3) + 1]
def lim2(x3, t0, t1):
return [scale * (x3 + t0**2*t1**3) - 1,
scale * (x3 + t0**2*t1**3) + 1]
def lim3(t0, t1):
return [scale * (t0 + t1) - 1, scale * (t0 + t1) + 1]
def opts0(x1, x2, x3, t0, t1):
return {'points': [t0 - t1*x1]}
def opts1(x2, x3, t0, t1):
return {}
def opts2(x3, t0, t1):
return {}
def opts3(t0, t1):
return {}
res = nquad(func2, [lim0, lim1, lim2, lim3], args=(0, 0),
opts=[opts0, opts1, opts2, opts3])
assert_quad(res, 25.066666666666663)
def test_square_separate_ranges_and_opts(self):
def f(y, x):
return 1.0
assert_quad(nquad(f, [[-1, 1], [-1, 1]], opts=[{}, {}]), 4.0)
def test_square_aliased_ranges_and_opts(self):
def f(y, x):
return 1.0
r = [-1, 1]
opt = {}
assert_quad(nquad(f, [r, r], opts=[opt, opt]), 4.0)
def test_square_separate_fn_ranges_and_opts(self):
def f(y, x):
return 1.0
def fn_range0(*args):
return (-1, 1)
def fn_range1(*args):
return (-1, 1)
def fn_opt0(*args):
return {}
def fn_opt1(*args):
return {}
ranges = [fn_range0, fn_range1]
opts = [fn_opt0, fn_opt1]
assert_quad(nquad(f, ranges, opts=opts), 4.0)
def test_square_aliased_fn_ranges_and_opts(self):
def f(y, x):
return 1.0
def fn_range(*args):
return (-1, 1)
def fn_opt(*args):
return {}
ranges = [fn_range, fn_range]
opts = [fn_opt, fn_opt]
assert_quad(nquad(f, ranges, opts=opts), 4.0)
def test_matching_quad(self):
def func(x):
return x**2 + 1
res, reserr = quad(func, 0, 4)
res2, reserr2 = nquad(func, ranges=[[0, 4]])
assert_almost_equal(res, res2)
assert_almost_equal(reserr, reserr2)
def test_matching_dblquad(self):
def func2d(x0, x1):
return x0**2 + x1**3 - x0 * x1 + 1
res, reserr = dblquad(func2d, -2, 2, lambda x: -3, lambda x: 3)
res2, reserr2 = nquad(func2d, [[-3, 3], (-2, 2)])
assert_almost_equal(res, res2)
assert_almost_equal(reserr, reserr2)
def test_matching_tplquad(self):
def func3d(x0, x1, x2, c0, c1):
return x0**2 + c0 * x1**3 - x0 * x1 + 1 + c1 * np.sin(x2)
res = tplquad(func3d, -1, 2, lambda x: -2, lambda x: 2,
lambda x, y: -np.pi, lambda x, y: np.pi,
args=(2, 3))
res2 = nquad(func3d, [[-np.pi, np.pi], [-2, 2], (-1, 2)], args=(2, 3))
assert_almost_equal(res, res2)
def test_dict_as_opts(self):
try:
nquad(lambda x, y: x * y, [[0, 1], [0, 1]], opts={'epsrel': 0.0001})
except(TypeError):
assert False