Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/scipy/_lib/tests/test__util.py

250 lines
7.9 KiB
Python
Raw Permalink Normal View History

from multiprocessing import Pool
from multiprocessing.pool import Pool as PWL
import os
import math
import numpy as np
from numpy.testing import assert_equal, assert_
import pytest
from pytest import raises as assert_raises, deprecated_call
import scipy
from scipy._lib._util import (_aligned_zeros, check_random_state, MapWrapper,
getfullargspec_no_self, FullArgSpec,
rng_integers)
def test__aligned_zeros():
niter = 10
def check(shape, dtype, order, align):
err_msg = repr((shape, dtype, order, align))
x = _aligned_zeros(shape, dtype, order, align=align)
if align is None:
align = np.dtype(dtype).alignment
assert_equal(x.__array_interface__['data'][0] % align, 0)
if hasattr(shape, '__len__'):
assert_equal(x.shape, shape, err_msg)
else:
assert_equal(x.shape, (shape,), err_msg)
assert_equal(x.dtype, dtype)
if order == "C":
assert_(x.flags.c_contiguous, err_msg)
elif order == "F":
if x.size > 0:
# Size-0 arrays get invalid flags on NumPy 1.5
assert_(x.flags.f_contiguous, err_msg)
elif order is None:
assert_(x.flags.c_contiguous, err_msg)
else:
raise ValueError()
# try various alignments
for align in [1, 2, 3, 4, 8, 16, 32, 64, None]:
for n in [0, 1, 3, 11]:
for order in ["C", "F", None]:
for dtype in [np.uint8, np.float64]:
for shape in [n, (1, 2, 3, n)]:
for j in range(niter):
check(shape, dtype, order, align)
def test_check_random_state():
# If seed is None, return the RandomState singleton used by np.random.
# If seed is an int, return a new RandomState instance seeded with seed.
# If seed is already a RandomState instance, return it.
# Otherwise raise ValueError.
rsi = check_random_state(1)
assert_equal(type(rsi), np.random.RandomState)
rsi = check_random_state(rsi)
assert_equal(type(rsi), np.random.RandomState)
rsi = check_random_state(None)
assert_equal(type(rsi), np.random.RandomState)
assert_raises(ValueError, check_random_state, 'a')
if hasattr(np.random, 'Generator'):
# np.random.Generator is only available in NumPy >= 1.17
rg = np.random.Generator(np.random.PCG64())
rsi = check_random_state(rg)
assert_equal(type(rsi), np.random.Generator)
def test_getfullargspec_no_self():
p = MapWrapper(1)
argspec = getfullargspec_no_self(p.__init__)
assert_equal(argspec, FullArgSpec(['pool'], None, None, (1,), [], None, {}))
argspec = getfullargspec_no_self(p.__call__)
assert_equal(argspec, FullArgSpec(['func', 'iterable'], None, None, None, [], None, {}))
class _rv_generic(object):
def _rvs(self, a, b=2, c=3, *args, size=None, **kwargs):
return None
rv_obj = _rv_generic()
argspec = getfullargspec_no_self(rv_obj._rvs)
assert_equal(argspec, FullArgSpec(['a', 'b', 'c'], 'args', 'kwargs', (2, 3), ['size'], {'size': None}, {}))
def test_mapwrapper_serial():
in_arg = np.arange(10.)
out_arg = np.sin(in_arg)
p = MapWrapper(1)
assert_(p._mapfunc is map)
assert_(p.pool is None)
assert_(p._own_pool is False)
out = list(p(np.sin, in_arg))
assert_equal(out, out_arg)
with assert_raises(RuntimeError):
p = MapWrapper(0)
def test_pool():
with Pool(2) as p:
p.map(math.sin, [1,2,3, 4])
def test_mapwrapper_parallel():
in_arg = np.arange(10.)
out_arg = np.sin(in_arg)
with MapWrapper(2) as p:
out = p(np.sin, in_arg)
assert_equal(list(out), out_arg)
assert_(p._own_pool is True)
assert_(isinstance(p.pool, PWL))
assert_(p._mapfunc is not None)
# the context manager should've closed the internal pool
# check that it has by asking it to calculate again.
with assert_raises(Exception) as excinfo:
p(np.sin, in_arg)
assert_(excinfo.type is ValueError)
# can also set a PoolWrapper up with a map-like callable instance
try:
p = Pool(2)
q = MapWrapper(p.map)
assert_(q._own_pool is False)
q.close()
# closing the PoolWrapper shouldn't close the internal pool
# because it didn't create it
out = p.map(np.sin, in_arg)
assert_equal(list(out), out_arg)
finally:
p.close()
# get our custom ones and a few from the "import *" cases
@pytest.mark.parametrize(
'key', ('fft', 'ifft', 'diag', 'arccos',
'randn', 'rand', 'array'))
def test_numpy_deprecation(key):
"""Test that 'from numpy import *' functions are deprecated."""
if key in ('fft', 'ifft', 'diag', 'arccos'):
arg = [1.0, 0.]
elif key == 'finfo':
arg = float
else:
arg = 2
func = getattr(scipy, key)
if key == 'fft':
match = r'scipy\.fft.*deprecated.*1.5.0.*'
else:
match = r'scipy\.%s is deprecated.*2\.0\.0' % key
with deprecated_call(match=match) as dep:
func(arg) # deprecated
# in case we catch more than one dep warning
fnames = [os.path.splitext(d.filename)[0] for d in dep.list]
basenames = [os.path.basename(fname) for fname in fnames]
assert 'test__util' in basenames
if key in ('rand', 'randn'):
root = np.random
elif key in ('fft', 'ifft'):
root = np.fft
else:
root = np
func_np = getattr(root, key)
func_np(arg) # not deprecated
assert func_np is not func
# classes should remain classes
if isinstance(func_np, type):
assert isinstance(func, type)
def test_numpy_deprecation_functionality():
# Check that the deprecation wrappers don't break basic NumPy
# functionality
with deprecated_call():
x = scipy.array([1, 2, 3], dtype=scipy.float64)
assert x.dtype == scipy.float64
assert x.dtype == np.float64
x = scipy.finfo(scipy.float32)
assert x.eps == np.finfo(np.float32).eps
assert scipy.float64 == np.float64
assert issubclass(np.float64, scipy.float64)
def test_rng_integers():
rng = np.random.RandomState()
# test that numbers are inclusive of high point
arr = rng_integers(rng, low=2, high=5, size=100, endpoint=True)
assert np.max(arr) == 5
assert np.min(arr) == 2
assert arr.shape == (100, )
# test that numbers are inclusive of high point
arr = rng_integers(rng, low=5, size=100, endpoint=True)
assert np.max(arr) == 5
assert np.min(arr) == 0
assert arr.shape == (100, )
# test that numbers are exclusive of high point
arr = rng_integers(rng, low=2, high=5, size=100, endpoint=False)
assert np.max(arr) == 4
assert np.min(arr) == 2
assert arr.shape == (100, )
# test that numbers are exclusive of high point
arr = rng_integers(rng, low=5, size=100, endpoint=False)
assert np.max(arr) == 4
assert np.min(arr) == 0
assert arr.shape == (100, )
# now try with np.random.Generator
try:
rng = np.random.default_rng()
except AttributeError:
return
# test that numbers are inclusive of high point
arr = rng_integers(rng, low=2, high=5, size=100, endpoint=True)
assert np.max(arr) == 5
assert np.min(arr) == 2
assert arr.shape == (100, )
# test that numbers are inclusive of high point
arr = rng_integers(rng, low=5, size=100, endpoint=True)
assert np.max(arr) == 5
assert np.min(arr) == 0
assert arr.shape == (100, )
# test that numbers are exclusive of high point
arr = rng_integers(rng, low=2, high=5, size=100, endpoint=False)
assert np.max(arr) == 4
assert np.min(arr) == 2
assert arr.shape == (100, )
# test that numbers are exclusive of high point
arr = rng_integers(rng, low=5, size=100, endpoint=False)
assert np.max(arr) == 4
assert np.min(arr) == 0
assert arr.shape == (100, )