Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/pywt/tests/test_perfect_reconstruction.py

62 lines
1.8 KiB
Python
Raw Permalink Normal View History

#!/usr/bin/env python
"""
Verify DWT perfect reconstruction.
"""
from __future__ import division, print_function, absolute_import
import numpy as np
from numpy.testing import assert_
import pywt
def test_perfect_reconstruction():
families = ('db', 'sym', 'coif', 'bior', 'rbio')
wavelets = sum([pywt.wavelist(name) for name in families], [])
# list of mode names in pywt and matlab
modes = [('zero', 'zpd'),
('constant', 'sp0'),
('symmetric', 'sym'),
('periodic', 'ppd'),
('smooth', 'sp1'),
('periodization', 'per')]
dtypes = (np.float32, np.float64)
for wavelet in wavelets:
for pmode, mmode in modes:
for dt in dtypes:
check_reconstruction(pmode, mmode, wavelet, dt)
def check_reconstruction(pmode, mmode, wavelet, dtype):
data_size = list(range(2, 40)) + [100, 200, 500, 1000, 2000, 10000,
50000, 100000]
np.random.seed(12345)
# TODO: smoke testing - more failures for different seeds
if dtype == np.float32:
# was 3e-7 has to be lowered as db21, db29, db33, db35, coif14, coif16 were failing
epsilon = 6e-7
else:
epsilon = 5e-11
for N in data_size:
data = np.asarray(np.random.random(N), dtype)
# compute dwt coefficients
pa, pd = pywt.dwt(data, wavelet, pmode)
# compute reconstruction
rec = pywt.idwt(pa, pd, wavelet, pmode)
if len(data) % 2:
rec = rec[:len(data)]
rms_rec = np.sqrt(np.mean((data-rec)**2))
msg = ('[RMS_REC > EPSILON] for Mode: %s, Wavelet: %s, '
'Length: %d, rms=%.3g' % (pmode, wavelet, len(data), rms_rec))
assert_(rms_rec < epsilon, msg=msg)