Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/networkx/generators/small.py

576 lines
15 KiB
Python
Raw Permalink Normal View History

"""
Various small and named graphs, together with some compact generators.
"""
__all__ = [
"make_small_graph",
"LCF_graph",
"bull_graph",
"chvatal_graph",
"cubical_graph",
"desargues_graph",
"diamond_graph",
"dodecahedral_graph",
"frucht_graph",
"heawood_graph",
"hoffman_singleton_graph",
"house_graph",
"house_x_graph",
"icosahedral_graph",
"krackhardt_kite_graph",
"moebius_kantor_graph",
"octahedral_graph",
"pappus_graph",
"petersen_graph",
"sedgewick_maze_graph",
"tetrahedral_graph",
"truncated_cube_graph",
"truncated_tetrahedron_graph",
"tutte_graph",
]
import networkx as nx
from networkx.generators.classic import (
empty_graph,
cycle_graph,
path_graph,
complete_graph,
)
from networkx.exception import NetworkXError
def make_small_undirected_graph(graph_description, create_using=None):
"""
Return a small undirected graph described by graph_description.
See make_small_graph.
"""
G = empty_graph(0, create_using)
if G.is_directed():
raise NetworkXError("Directed Graph not supported")
return make_small_graph(graph_description, G)
def make_small_graph(graph_description, create_using=None):
"""
Return the small graph described by graph_description.
graph_description is a list of the form [ltype,name,n,xlist]
Here ltype is one of "adjacencylist" or "edgelist",
name is the name of the graph and n the number of nodes.
This constructs a graph of n nodes with integer labels 0,..,n-1.
If ltype="adjacencylist" then xlist is an adjacency list
with exactly n entries, in with the j'th entry (which can be empty)
specifies the nodes connected to vertex j.
e.g. the "square" graph C_4 can be obtained by
>>> G = nx.make_small_graph(
... ["adjacencylist", "C_4", 4, [[2, 4], [1, 3], [2, 4], [1, 3]]]
... )
or, since we do not need to add edges twice,
>>> G = nx.make_small_graph(["adjacencylist", "C_4", 4, [[2, 4], [3], [4], []]])
If ltype="edgelist" then xlist is an edge list
written as [[v1,w2],[v2,w2],...,[vk,wk]],
where vj and wj integers in the range 1,..,n
e.g. the "square" graph C_4 can be obtained by
>>> G = nx.make_small_graph(
... ["edgelist", "C_4", 4, [[1, 2], [3, 4], [2, 3], [4, 1]]]
... )
Use the create_using argument to choose the graph class/type.
"""
if graph_description[0] not in ("adjacencylist", "edgelist"):
raise NetworkXError("ltype must be either adjacencylist or edgelist")
ltype = graph_description[0]
name = graph_description[1]
n = graph_description[2]
G = empty_graph(n, create_using)
nodes = G.nodes()
if ltype == "adjacencylist":
adjlist = graph_description[3]
if len(adjlist) != n:
raise NetworkXError("invalid graph_description")
G.add_edges_from([(u - 1, v) for v in nodes for u in adjlist[v]])
elif ltype == "edgelist":
edgelist = graph_description[3]
for e in edgelist:
v1 = e[0] - 1
v2 = e[1] - 1
if v1 < 0 or v1 > n - 1 or v2 < 0 or v2 > n - 1:
raise NetworkXError("invalid graph_description")
else:
G.add_edge(v1, v2)
G.name = name
return G
def LCF_graph(n, shift_list, repeats, create_using=None):
"""
Return the cubic graph specified in LCF notation.
LCF notation (LCF=Lederberg-Coxeter-Fruchte) is a compressed
notation used in the generation of various cubic Hamiltonian
graphs of high symmetry. See, for example, dodecahedral_graph,
desargues_graph, heawood_graph and pappus_graph below.
n (number of nodes)
The starting graph is the n-cycle with nodes 0,...,n-1.
(The null graph is returned if n < 0.)
shift_list = [s1,s2,..,sk], a list of integer shifts mod n,
repeats
integer specifying the number of times that shifts in shift_list
are successively applied to each v_current in the n-cycle
to generate an edge between v_current and v_current+shift mod n.
For v1 cycling through the n-cycle a total of k*repeats
with shift cycling through shiftlist repeats times connect
v1 with v1+shift mod n
The utility graph $K_{3,3}$
>>> G = nx.LCF_graph(6, [3, -3], 3)
The Heawood graph
>>> G = nx.LCF_graph(14, [5, -5], 7)
See http://mathworld.wolfram.com/LCFNotation.html for a description
and references.
"""
if n <= 0:
return empty_graph(0, create_using)
# start with the n-cycle
G = cycle_graph(n, create_using)
if G.is_directed():
raise NetworkXError("Directed Graph not supported")
G.name = "LCF_graph"
nodes = sorted(list(G))
n_extra_edges = repeats * len(shift_list)
# edges are added n_extra_edges times
# (not all of these need be new)
if n_extra_edges < 1:
return G
for i in range(n_extra_edges):
shift = shift_list[i % len(shift_list)] # cycle through shift_list
v1 = nodes[i % n] # cycle repeatedly through nodes
v2 = nodes[(i + shift) % n]
G.add_edge(v1, v2)
return G
# -------------------------------------------------------------------------------
# Various small and named graphs
# -------------------------------------------------------------------------------
def bull_graph(create_using=None):
"""Returns the Bull graph. """
description = [
"adjacencylist",
"Bull Graph",
5,
[[2, 3], [1, 3, 4], [1, 2, 5], [2], [3]],
]
G = make_small_undirected_graph(description, create_using)
return G
def chvatal_graph(create_using=None):
"""Returns the Chvátal graph."""
description = [
"adjacencylist",
"Chvatal Graph",
12,
[
[2, 5, 7, 10],
[3, 6, 8],
[4, 7, 9],
[5, 8, 10],
[6, 9],
[11, 12],
[11, 12],
[9, 12],
[11],
[11, 12],
[],
[],
],
]
G = make_small_undirected_graph(description, create_using)
return G
def cubical_graph(create_using=None):
"""Returns the 3-regular Platonic Cubical graph."""
description = [
"adjacencylist",
"Platonic Cubical Graph",
8,
[
[2, 4, 5],
[1, 3, 8],
[2, 4, 7],
[1, 3, 6],
[1, 6, 8],
[4, 5, 7],
[3, 6, 8],
[2, 5, 7],
],
]
G = make_small_undirected_graph(description, create_using)
return G
def desargues_graph(create_using=None):
""" Return the Desargues graph."""
G = LCF_graph(20, [5, -5, 9, -9], 5, create_using)
G.name = "Desargues Graph"
return G
def diamond_graph(create_using=None):
"""Returns the Diamond graph. """
description = [
"adjacencylist",
"Diamond Graph",
4,
[[2, 3], [1, 3, 4], [1, 2, 4], [2, 3]],
]
G = make_small_undirected_graph(description, create_using)
return G
def dodecahedral_graph(create_using=None):
""" Return the Platonic Dodecahedral graph. """
G = LCF_graph(20, [10, 7, 4, -4, -7, 10, -4, 7, -7, 4], 2, create_using)
G.name = "Dodecahedral Graph"
return G
def frucht_graph(create_using=None):
"""Returns the Frucht Graph.
The Frucht Graph is the smallest cubical graph whose
automorphism group consists only of the identity element.
"""
G = cycle_graph(7, create_using)
G.add_edges_from(
[
[0, 7],
[1, 7],
[2, 8],
[3, 9],
[4, 9],
[5, 10],
[6, 10],
[7, 11],
[8, 11],
[8, 9],
[10, 11],
]
)
G.name = "Frucht Graph"
return G
def heawood_graph(create_using=None):
""" Return the Heawood graph, a (3,6) cage. """
G = LCF_graph(14, [5, -5], 7, create_using)
G.name = "Heawood Graph"
return G
def hoffman_singleton_graph():
"""Return the Hoffman-Singleton Graph."""
G = nx.Graph()
for i in range(5):
for j in range(5):
G.add_edge(("pentagon", i, j), ("pentagon", i, (j - 1) % 5))
G.add_edge(("pentagon", i, j), ("pentagon", i, (j + 1) % 5))
G.add_edge(("pentagram", i, j), ("pentagram", i, (j - 2) % 5))
G.add_edge(("pentagram", i, j), ("pentagram", i, (j + 2) % 5))
for k in range(5):
G.add_edge(("pentagon", i, j), ("pentagram", k, (i * k + j) % 5))
G = nx.convert_node_labels_to_integers(G)
G.name = "Hoffman-Singleton Graph"
return G
def house_graph(create_using=None):
"""Returns the House graph (square with triangle on top)."""
description = [
"adjacencylist",
"House Graph",
5,
[[2, 3], [1, 4], [1, 4, 5], [2, 3, 5], [3, 4]],
]
G = make_small_undirected_graph(description, create_using)
return G
def house_x_graph(create_using=None):
"""Returns the House graph with a cross inside the house square."""
description = [
"adjacencylist",
"House-with-X-inside Graph",
5,
[[2, 3, 4], [1, 3, 4], [1, 2, 4, 5], [1, 2, 3, 5], [3, 4]],
]
G = make_small_undirected_graph(description, create_using)
return G
def icosahedral_graph(create_using=None):
"""Returns the Platonic Icosahedral graph."""
description = [
"adjacencylist",
"Platonic Icosahedral Graph",
12,
[
[2, 6, 8, 9, 12],
[3, 6, 7, 9],
[4, 7, 9, 10],
[5, 7, 10, 11],
[6, 7, 11, 12],
[7, 12],
[],
[9, 10, 11, 12],
[10],
[11],
[12],
[],
],
]
G = make_small_undirected_graph(description, create_using)
return G
def krackhardt_kite_graph(create_using=None):
"""
Return the Krackhardt Kite Social Network.
A 10 actor social network introduced by David Krackhardt
to illustrate: degree, betweenness, centrality, closeness, etc.
The traditional labeling is:
Andre=1, Beverley=2, Carol=3, Diane=4,
Ed=5, Fernando=6, Garth=7, Heather=8, Ike=9, Jane=10.
"""
description = [
"adjacencylist",
"Krackhardt Kite Social Network",
10,
[
[2, 3, 4, 6],
[1, 4, 5, 7],
[1, 4, 6],
[1, 2, 3, 5, 6, 7],
[2, 4, 7],
[1, 3, 4, 7, 8],
[2, 4, 5, 6, 8],
[6, 7, 9],
[8, 10],
[9],
],
]
G = make_small_undirected_graph(description, create_using)
return G
def moebius_kantor_graph(create_using=None):
"""Returns the Moebius-Kantor graph."""
G = LCF_graph(16, [5, -5], 8, create_using)
G.name = "Moebius-Kantor Graph"
return G
def octahedral_graph(create_using=None):
"""Returns the Platonic Octahedral graph."""
description = [
"adjacencylist",
"Platonic Octahedral Graph",
6,
[[2, 3, 4, 5], [3, 4, 6], [5, 6], [5, 6], [6], []],
]
G = make_small_undirected_graph(description, create_using)
return G
def pappus_graph():
""" Return the Pappus graph."""
G = LCF_graph(18, [5, 7, -7, 7, -7, -5], 3)
G.name = "Pappus Graph"
return G
def petersen_graph(create_using=None):
"""Returns the Petersen graph."""
description = [
"adjacencylist",
"Petersen Graph",
10,
[
[2, 5, 6],
[1, 3, 7],
[2, 4, 8],
[3, 5, 9],
[4, 1, 10],
[1, 8, 9],
[2, 9, 10],
[3, 6, 10],
[4, 6, 7],
[5, 7, 8],
],
]
G = make_small_undirected_graph(description, create_using)
return G
def sedgewick_maze_graph(create_using=None):
"""
Return a small maze with a cycle.
This is the maze used in Sedgewick,3rd Edition, Part 5, Graph
Algorithms, Chapter 18, e.g. Figure 18.2 and following.
Nodes are numbered 0,..,7
"""
G = empty_graph(0, create_using)
G.add_nodes_from(range(8))
G.add_edges_from([[0, 2], [0, 7], [0, 5]])
G.add_edges_from([[1, 7], [2, 6]])
G.add_edges_from([[3, 4], [3, 5]])
G.add_edges_from([[4, 5], [4, 7], [4, 6]])
G.name = "Sedgewick Maze"
return G
def tetrahedral_graph(create_using=None):
""" Return the 3-regular Platonic Tetrahedral graph."""
G = complete_graph(4, create_using)
G.name = "Platonic Tetrahedral graph"
return G
def truncated_cube_graph(create_using=None):
"""Returns the skeleton of the truncated cube."""
description = [
"adjacencylist",
"Truncated Cube Graph",
24,
[
[2, 3, 5],
[12, 15],
[4, 5],
[7, 9],
[6],
[17, 19],
[8, 9],
[11, 13],
[10],
[18, 21],
[12, 13],
[15],
[14],
[22, 23],
[16],
[20, 24],
[18, 19],
[21],
[20],
[24],
[22],
[23],
[24],
[],
],
]
G = make_small_undirected_graph(description, create_using)
return G
def truncated_tetrahedron_graph(create_using=None):
"""Returns the skeleton of the truncated Platonic tetrahedron."""
G = path_graph(12, create_using)
# G.add_edges_from([(1,3),(1,10),(2,7),(4,12),(5,12),(6,8),(9,11)])
G.add_edges_from([(0, 2), (0, 9), (1, 6), (3, 11), (4, 11), (5, 7), (8, 10)])
G.name = "Truncated Tetrahedron Graph"
return G
def tutte_graph(create_using=None):
"""Returns the Tutte graph."""
description = [
"adjacencylist",
"Tutte's Graph",
46,
[
[2, 3, 4],
[5, 27],
[11, 12],
[19, 20],
[6, 34],
[7, 30],
[8, 28],
[9, 15],
[10, 39],
[11, 38],
[40],
[13, 40],
[14, 36],
[15, 16],
[35],
[17, 23],
[18, 45],
[19, 44],
[46],
[21, 46],
[22, 42],
[23, 24],
[41],
[25, 28],
[26, 33],
[27, 32],
[34],
[29],
[30, 33],
[31],
[32, 34],
[33],
[],
[],
[36, 39],
[37],
[38, 40],
[39],
[],
[],
[42, 45],
[43],
[44, 46],
[45],
[],
[],
],
]
G = make_small_undirected_graph(description, create_using)
return G