Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/mpl_toolkits/tests/test_axes_grid1.py

481 lines
18 KiB
Python
Raw Permalink Normal View History

from itertools import product
import platform
import matplotlib
import matplotlib.pyplot as plt
from matplotlib import cbook
from matplotlib.cbook import MatplotlibDeprecationWarning
from matplotlib.backend_bases import MouseEvent
from matplotlib.colors import LogNorm
from matplotlib.transforms import Bbox, TransformedBbox
from matplotlib.testing.decorators import (
image_comparison, remove_ticks_and_titles)
from mpl_toolkits.axes_grid1 import (
axes_size as Size, host_subplot, make_axes_locatable, AxesGrid, ImageGrid)
from mpl_toolkits.axes_grid1.anchored_artists import (
AnchoredSizeBar, AnchoredDirectionArrows)
from mpl_toolkits.axes_grid1.axes_divider import HBoxDivider
from mpl_toolkits.axes_grid1.inset_locator import (
zoomed_inset_axes, mark_inset, inset_axes, BboxConnectorPatch)
import mpl_toolkits.axes_grid1.mpl_axes
import pytest
import numpy as np
from numpy.testing import assert_array_equal, assert_array_almost_equal
def test_divider_append_axes():
fig, ax = plt.subplots()
divider = make_axes_locatable(ax)
axs = {
"main": ax,
"top": divider.append_axes("top", 1.2, pad=0.1, sharex=ax),
"bottom": divider.append_axes("bottom", 1.2, pad=0.1, sharex=ax),
"left": divider.append_axes("left", 1.2, pad=0.1, sharey=ax),
"right": divider.append_axes("right", 1.2, pad=0.1, sharey=ax),
}
fig.canvas.draw()
renderer = fig.canvas.get_renderer()
bboxes = {k: axs[k].get_window_extent() for k in axs}
dpi = fig.dpi
assert bboxes["top"].height == pytest.approx(1.2 * dpi)
assert bboxes["bottom"].height == pytest.approx(1.2 * dpi)
assert bboxes["left"].width == pytest.approx(1.2 * dpi)
assert bboxes["right"].width == pytest.approx(1.2 * dpi)
assert bboxes["top"].y0 - bboxes["main"].y1 == pytest.approx(0.1 * dpi)
assert bboxes["main"].y0 - bboxes["bottom"].y1 == pytest.approx(0.1 * dpi)
assert bboxes["main"].x0 - bboxes["left"].x1 == pytest.approx(0.1 * dpi)
assert bboxes["right"].x0 - bboxes["main"].x1 == pytest.approx(0.1 * dpi)
assert bboxes["left"].y0 == bboxes["main"].y0 == bboxes["right"].y0
assert bboxes["left"].y1 == bboxes["main"].y1 == bboxes["right"].y1
assert bboxes["top"].x0 == bboxes["main"].x0 == bboxes["bottom"].x0
assert bboxes["top"].x1 == bboxes["main"].x1 == bboxes["bottom"].x1
@image_comparison(['twin_axes_empty_and_removed'], extensions=["png"], tol=1)
def test_twin_axes_empty_and_removed():
# Purely cosmetic font changes (avoid overlap)
matplotlib.rcParams.update({"font.size": 8})
matplotlib.rcParams.update({"xtick.labelsize": 8})
matplotlib.rcParams.update({"ytick.labelsize": 8})
generators = ["twinx", "twiny", "twin"]
modifiers = ["", "host invisible", "twin removed", "twin invisible",
"twin removed\nhost invisible"]
# Unmodified host subplot at the beginning for reference
h = host_subplot(len(modifiers)+1, len(generators), 2)
h.text(0.5, 0.5, "host_subplot",
horizontalalignment="center", verticalalignment="center")
# Host subplots with various modifications (twin*, visibility) applied
for i, (mod, gen) in enumerate(product(modifiers, generators),
len(generators) + 1):
h = host_subplot(len(modifiers)+1, len(generators), i)
t = getattr(h, gen)()
if "twin invisible" in mod:
t.axis[:].set_visible(False)
if "twin removed" in mod:
t.remove()
if "host invisible" in mod:
h.axis[:].set_visible(False)
h.text(0.5, 0.5, gen + ("\n" + mod if mod else ""),
horizontalalignment="center", verticalalignment="center")
plt.subplots_adjust(wspace=0.5, hspace=1)
@pytest.mark.parametrize("legacy_colorbar", [False, True])
def test_axesgrid_colorbar_log_smoketest(legacy_colorbar):
matplotlib.rcParams["mpl_toolkits.legacy_colorbar"] = legacy_colorbar
fig = plt.figure()
grid = AxesGrid(fig, 111, # modified to be only subplot
nrows_ncols=(1, 1),
ngrids=1,
label_mode="L",
cbar_location="top",
cbar_mode="single",
)
Z = 10000 * np.random.rand(10, 10)
im = grid[0].imshow(Z, interpolation="nearest", norm=LogNorm())
if legacy_colorbar:
with pytest.warns(MatplotlibDeprecationWarning):
grid.cbar_axes[0].colorbar(im)
else:
grid.cbar_axes[0].colorbar(im)
@image_comparison(['inset_locator.png'], style='default', remove_text=True)
def test_inset_locator():
fig, ax = plt.subplots(figsize=[5, 4])
# prepare the demo image
# Z is a 15x15 array
Z = cbook.get_sample_data("axes_grid/bivariate_normal.npy", np_load=True)
extent = (-3, 4, -4, 3)
Z2 = np.zeros((150, 150))
ny, nx = Z.shape
Z2[30:30+ny, 30:30+nx] = Z
# extent = [-3, 4, -4, 3]
ax.imshow(Z2, extent=extent, interpolation="nearest",
origin="lower")
axins = zoomed_inset_axes(ax, zoom=6, loc='upper right')
axins.imshow(Z2, extent=extent, interpolation="nearest",
origin="lower")
axins.yaxis.get_major_locator().set_params(nbins=7)
axins.xaxis.get_major_locator().set_params(nbins=7)
# sub region of the original image
x1, x2, y1, y2 = -1.5, -0.9, -2.5, -1.9
axins.set_xlim(x1, x2)
axins.set_ylim(y1, y2)
plt.xticks(visible=False)
plt.yticks(visible=False)
# draw a bbox of the region of the inset axes in the parent axes and
# connecting lines between the bbox and the inset axes area
mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="0.5")
asb = AnchoredSizeBar(ax.transData,
0.5,
'0.5',
loc='lower center',
pad=0.1, borderpad=0.5, sep=5,
frameon=False)
ax.add_artist(asb)
@image_comparison(['inset_axes.png'], style='default', remove_text=True)
def test_inset_axes():
fig, ax = plt.subplots(figsize=[5, 4])
# prepare the demo image
# Z is a 15x15 array
Z = cbook.get_sample_data("axes_grid/bivariate_normal.npy", np_load=True)
extent = (-3, 4, -4, 3)
Z2 = np.zeros((150, 150))
ny, nx = Z.shape
Z2[30:30+ny, 30:30+nx] = Z
# extent = [-3, 4, -4, 3]
ax.imshow(Z2, extent=extent, interpolation="nearest",
origin="lower")
# creating our inset axes with a bbox_transform parameter
axins = inset_axes(ax, width=1., height=1., bbox_to_anchor=(1, 1),
bbox_transform=ax.transAxes)
axins.imshow(Z2, extent=extent, interpolation="nearest",
origin="lower")
axins.yaxis.get_major_locator().set_params(nbins=7)
axins.xaxis.get_major_locator().set_params(nbins=7)
# sub region of the original image
x1, x2, y1, y2 = -1.5, -0.9, -2.5, -1.9
axins.set_xlim(x1, x2)
axins.set_ylim(y1, y2)
plt.xticks(visible=False)
plt.yticks(visible=False)
# draw a bbox of the region of the inset axes in the parent axes and
# connecting lines between the bbox and the inset axes area
mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="0.5")
asb = AnchoredSizeBar(ax.transData,
0.5,
'0.5',
loc='lower center',
pad=0.1, borderpad=0.5, sep=5,
frameon=False)
ax.add_artist(asb)
def test_inset_axes_complete():
dpi = 100
figsize = (6, 5)
fig, ax = plt.subplots(figsize=figsize, dpi=dpi)
fig.subplots_adjust(.1, .1, .9, .9)
ins = inset_axes(ax, width=2., height=2., borderpad=0)
fig.canvas.draw()
assert_array_almost_equal(
ins.get_position().extents,
np.array(((0.9*figsize[0]-2.)/figsize[0],
(0.9*figsize[1]-2.)/figsize[1], 0.9, 0.9)))
ins = inset_axes(ax, width="40%", height="30%", borderpad=0)
fig.canvas.draw()
assert_array_almost_equal(
ins.get_position().extents,
np.array((.9-.8*.4, .9-.8*.3, 0.9, 0.9)))
ins = inset_axes(ax, width=1., height=1.2, bbox_to_anchor=(200, 100),
loc=3, borderpad=0)
fig.canvas.draw()
assert_array_almost_equal(
ins.get_position().extents,
np.array((200./dpi/figsize[0], 100./dpi/figsize[1],
(200./dpi+1)/figsize[0], (100./dpi+1.2)/figsize[1])))
ins1 = inset_axes(ax, width="35%", height="60%", loc=3, borderpad=1)
ins2 = inset_axes(ax, width="100%", height="100%",
bbox_to_anchor=(0, 0, .35, .60),
bbox_transform=ax.transAxes, loc=3, borderpad=1)
fig.canvas.draw()
assert_array_equal(ins1.get_position().extents,
ins2.get_position().extents)
with pytest.raises(ValueError):
ins = inset_axes(ax, width="40%", height="30%",
bbox_to_anchor=(0.4, 0.5))
with pytest.warns(UserWarning):
ins = inset_axes(ax, width="40%", height="30%",
bbox_transform=ax.transAxes)
@image_comparison(['fill_facecolor.png'], remove_text=True, style='mpl20')
def test_fill_facecolor():
fig, ax = plt.subplots(1, 5)
fig.set_size_inches(5, 5)
for i in range(1, 4):
ax[i].yaxis.set_visible(False)
ax[4].yaxis.tick_right()
bbox = Bbox.from_extents(0, 0.4, 1, 0.6)
# fill with blue by setting 'fc' field
bbox1 = TransformedBbox(bbox, ax[0].transData)
bbox2 = TransformedBbox(bbox, ax[1].transData)
# set color to BboxConnectorPatch
p = BboxConnectorPatch(
bbox1, bbox2, loc1a=1, loc2a=2, loc1b=4, loc2b=3,
ec="r", fc="b")
p.set_clip_on(False)
ax[0].add_patch(p)
# set color to marked area
axins = zoomed_inset_axes(ax[0], 1, loc='upper right')
axins.set_xlim(0, 0.2)
axins.set_ylim(0, 0.2)
plt.gca().axes.get_xaxis().set_ticks([])
plt.gca().axes.get_yaxis().set_ticks([])
mark_inset(ax[0], axins, loc1=2, loc2=4, fc="b", ec="0.5")
# fill with yellow by setting 'facecolor' field
bbox3 = TransformedBbox(bbox, ax[1].transData)
bbox4 = TransformedBbox(bbox, ax[2].transData)
# set color to BboxConnectorPatch
p = BboxConnectorPatch(
bbox3, bbox4, loc1a=1, loc2a=2, loc1b=4, loc2b=3,
ec="r", facecolor="y")
p.set_clip_on(False)
ax[1].add_patch(p)
# set color to marked area
axins = zoomed_inset_axes(ax[1], 1, loc='upper right')
axins.set_xlim(0, 0.2)
axins.set_ylim(0, 0.2)
plt.gca().axes.get_xaxis().set_ticks([])
plt.gca().axes.get_yaxis().set_ticks([])
mark_inset(ax[1], axins, loc1=2, loc2=4, facecolor="y", ec="0.5")
# fill with green by setting 'color' field
bbox5 = TransformedBbox(bbox, ax[2].transData)
bbox6 = TransformedBbox(bbox, ax[3].transData)
# set color to BboxConnectorPatch
p = BboxConnectorPatch(
bbox5, bbox6, loc1a=1, loc2a=2, loc1b=4, loc2b=3,
ec="r", color="g")
p.set_clip_on(False)
ax[2].add_patch(p)
# set color to marked area
axins = zoomed_inset_axes(ax[2], 1, loc='upper right')
axins.set_xlim(0, 0.2)
axins.set_ylim(0, 0.2)
plt.gca().axes.get_xaxis().set_ticks([])
plt.gca().axes.get_yaxis().set_ticks([])
mark_inset(ax[2], axins, loc1=2, loc2=4, color="g", ec="0.5")
# fill with green but color won't show if set fill to False
bbox7 = TransformedBbox(bbox, ax[3].transData)
bbox8 = TransformedBbox(bbox, ax[4].transData)
# BboxConnectorPatch won't show green
p = BboxConnectorPatch(
bbox7, bbox8, loc1a=1, loc2a=2, loc1b=4, loc2b=3,
ec="r", fc="g", fill=False)
p.set_clip_on(False)
ax[3].add_patch(p)
# marked area won't show green
axins = zoomed_inset_axes(ax[3], 1, loc='upper right')
axins.set_xlim(0, 0.2)
axins.set_ylim(0, 0.2)
axins.get_xaxis().set_ticks([])
axins.get_yaxis().set_ticks([])
mark_inset(ax[3], axins, loc1=2, loc2=4, fc="g", ec="0.5", fill=False)
@image_comparison(['zoomed_axes.png', 'inverted_zoomed_axes.png'])
def test_zooming_with_inverted_axes():
fig, ax = plt.subplots()
ax.plot([1, 2, 3], [1, 2, 3])
ax.axis([1, 3, 1, 3])
inset_ax = zoomed_inset_axes(ax, zoom=2.5, loc='lower right')
inset_ax.axis([1.1, 1.4, 1.1, 1.4])
fig, ax = plt.subplots()
ax.plot([1, 2, 3], [1, 2, 3])
ax.axis([3, 1, 3, 1])
inset_ax = zoomed_inset_axes(ax, zoom=2.5, loc='lower right')
inset_ax.axis([1.4, 1.1, 1.4, 1.1])
@image_comparison(['anchored_direction_arrows.png'],
tol=0 if platform.machine() == 'x86_64' else 0.01)
def test_anchored_direction_arrows():
fig, ax = plt.subplots()
ax.imshow(np.zeros((10, 10)), interpolation='nearest')
simple_arrow = AnchoredDirectionArrows(ax.transAxes, 'X', 'Y')
ax.add_artist(simple_arrow)
@image_comparison(['anchored_direction_arrows_many_args.png'])
def test_anchored_direction_arrows_many_args():
fig, ax = plt.subplots()
ax.imshow(np.ones((10, 10)))
direction_arrows = AnchoredDirectionArrows(
ax.transAxes, 'A', 'B', loc='upper right', color='red',
aspect_ratio=-0.5, pad=0.6, borderpad=2, frameon=True, alpha=0.7,
sep_x=-0.06, sep_y=-0.08, back_length=0.1, head_width=9,
head_length=10, tail_width=5)
ax.add_artist(direction_arrows)
def test_axes_locatable_position():
fig, ax = plt.subplots()
divider = make_axes_locatable(ax)
cax = divider.append_axes('right', size='5%', pad='2%')
fig.canvas.draw()
assert np.isclose(cax.get_position(original=False).width,
0.03621495327102808)
@image_comparison(['image_grid.png'],
remove_text=True, style='mpl20',
savefig_kwarg={'bbox_inches': 'tight'})
def test_image_grid():
# test that image grid works with bbox_inches=tight.
im = np.arange(100).reshape((10, 10))
fig = plt.figure(1, (4, 4))
grid = ImageGrid(fig, 111, nrows_ncols=(2, 2), axes_pad=0.1)
for i in range(4):
grid[i].imshow(im, interpolation='nearest')
grid[i].set_title('test {0}{0}'.format(i))
def test_gettightbbox():
fig, ax = plt.subplots(figsize=(8, 6))
l, = ax.plot([1, 2, 3], [0, 1, 0])
ax_zoom = zoomed_inset_axes(ax, 4)
ax_zoom.plot([1, 2, 3], [0, 1, 0])
mark_inset(ax, ax_zoom, loc1=1, loc2=3, fc="none", ec='0.3')
remove_ticks_and_titles(fig)
bbox = fig.get_tightbbox(fig.canvas.get_renderer())
np.testing.assert_array_almost_equal(bbox.extents,
[-17.7, -13.9, 7.2, 5.4])
@pytest.mark.parametrize("click_on", ["big", "small"])
@pytest.mark.parametrize("big_on_axes,small_on_axes", [
("gca", "gca"),
("host", "host"),
("host", "parasite"),
("parasite", "host"),
("parasite", "parasite")
])
def test_picking_callbacks_overlap(big_on_axes, small_on_axes, click_on):
"""Test pick events on normal, host or parasite axes."""
# Two rectangles are drawn and "clicked on", a small one and a big one
# enclosing the small one. The axis on which they are drawn as well as the
# rectangle that is clicked on are varied.
# In each case we expect that both rectangles are picked if we click on the
# small one and only the big one is picked if we click on the big one.
# Also tests picking on normal axes ("gca") as a control.
big = plt.Rectangle((0.25, 0.25), 0.5, 0.5, picker=5)
small = plt.Rectangle((0.4, 0.4), 0.2, 0.2, facecolor="r", picker=5)
# Machinery for "receiving" events
received_events = []
def on_pick(event):
received_events.append(event)
plt.gcf().canvas.mpl_connect('pick_event', on_pick)
# Shortcut
rectangles_on_axes = (big_on_axes, small_on_axes)
# Axes setup
axes = {"gca": None, "host": None, "parasite": None}
if "gca" in rectangles_on_axes:
axes["gca"] = plt.gca()
if "host" in rectangles_on_axes or "parasite" in rectangles_on_axes:
axes["host"] = host_subplot(111)
axes["parasite"] = axes["host"].twin()
# Add rectangles to axes
axes[big_on_axes].add_patch(big)
axes[small_on_axes].add_patch(small)
# Simulate picking with click mouse event
if click_on == "big":
click_axes = axes[big_on_axes]
axes_coords = (0.3, 0.3)
else:
click_axes = axes[small_on_axes]
axes_coords = (0.5, 0.5)
# In reality mouse events never happen on parasite axes, only host axes
if click_axes is axes["parasite"]:
click_axes = axes["host"]
(x, y) = click_axes.transAxes.transform(axes_coords)
m = MouseEvent("button_press_event", click_axes.figure.canvas, x, y,
button=1)
click_axes.pick(m)
# Checks
expected_n_events = 2 if click_on == "small" else 1
assert len(received_events) == expected_n_events
event_rects = [event.artist for event in received_events]
assert big in event_rects
if click_on == "small":
assert small in event_rects
def test_hbox_divider():
arr1 = np.arange(20).reshape((4, 5))
arr2 = np.arange(20).reshape((5, 4))
fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.imshow(arr1)
ax2.imshow(arr2)
pad = 0.5 # inches.
divider = HBoxDivider(
fig, 111, # Position of combined axes.
horizontal=[Size.AxesX(ax1), Size.Fixed(pad), Size.AxesX(ax2)],
vertical=[Size.AxesY(ax1), Size.Scaled(1), Size.AxesY(ax2)])
ax1.set_axes_locator(divider.new_locator(0))
ax2.set_axes_locator(divider.new_locator(2))
fig.canvas.draw()
p1 = ax1.get_position()
p2 = ax2.get_position()
assert p1.height == p2.height
assert p2.width / p1.width == pytest.approx((4 / 5) ** 2)
def test_axes_class_tuple():
fig = plt.figure()
axes_class = (mpl_toolkits.axes_grid1.mpl_axes.Axes, {})
gr = AxesGrid(fig, 111, nrows_ncols=(1, 1), axes_class=axes_class)