import numpy as np import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') #reproducibility np.random.seed(1) #__________________________________________________________________________________ #Task 1 #1.1 def generate_data(n_samples=100, noise_std=1.0): """Generates synthetic data with noise""" # generate x values uniformly in [0, 10] x = np.linspace(0, 10, n_samples) #y values without noise y_clean = (np.log(x + 1e-10) + 1) * np.cos(x) + np.sin(2*x) #noise noise = np.random.normal(0, noise_std, n_samples) y_noisy = y_clean + noise return x, y_clean, y_noisy # generate data x, y_clean, y_noisy = generate_data(100) # Plot clean and noisy data plt.plot(x, y_clean, 'b-', label='Clean Data', linewidth=2) plt.plot(x, y_noisy, 'ro', label='Noisy Data', alpha=0.6, markersize=4) plt.xlabel('x') plt.ylabel('y') plt.title('Clean vs Noisy Data') plt.legend() plt.grid(True, alpha=0.3) plt.show() #__________________________________________________________________________________ #1.2 def gaussian_basis(x, mu, sigma=1.0): """Gaussian basis function""" return np.exp(-(x - mu)**2 / sigma**2) def gaussian_features(x, D, sigma=1.0): """Create Gaussian basis features""" if D == 0: return np.ones((len(x), 1)) x_min, x_max = np.min(x), np.max(x) mu_i = x_min + (x_max - x_min) / (D - 1) * np.arange(D) features = np.ones((len(x), D + 1)) # with bias term for i, mu in enumerate(mu_i): features[:, i+1] = gaussian_basis(x, mu, sigma) return features # Plot Gaussian basis functions for different D values D_values_to_plot = [5, 15, 30,45] x_plot = np.linspace(0, 10, 200) plt.figure(figsize=(15, 4)) for i, D in enumerate(D_values_to_plot, 1): plt.subplot(1, 4, i) # Calculate means x_min, x_max = np.min(x_plot), np.max(x_plot) mu_i = x_min + (x_max - x_min) / (D - 1) * np.arange(D) # Plot each Gaussian basis for mu in mu_i: phi = gaussian_basis(x_plot, mu) plt.plot(x_plot, phi, alpha=0.7) plt.title(f'Gaussian Basis Functions (D={D})') plt.xlabel('x') plt.ylabel('$\phi(x)$') plt.grid(True, alpha=0.3) plt.tight_layout() plt.show() #__________________________________________________________________________________