1.4 and 2

This commit is contained in:
ShaaniBel 2025-10-20 09:49:32 -04:00
parent 9b51861470
commit 6d1d4e26f1

183
A2.py
View file

@ -50,7 +50,11 @@ def gaussian_features(x, D, sigma=1.0):
return np.ones((len(x), 1))
x_min, x_max = np.min(x), np.max(x)
mu_i = x_min + (x_max - x_min) / (D - 1) * np.arange(D)
if D == 1:
mu_i = np.array([(x_min + x_max) / 2])
else:
mu_i = x_min + (x_max - x_min) / (D - 1) * np.arange(D)
features = np.ones((len(x), D + 1)) # with bias term
@ -102,7 +106,8 @@ class GaussianRegression:
self.D = D
# create features for training and fit using least squares
X = gaussian_features(x, D, self.sigma)
self.w = np.linalg.lstsq(X, y, rcond=None)[0]
#self.w = np.linalg.lstsq(X, y, rcond=None)[0]
self.w = np.linalg.pinv(X.T @ X) @ (X.T @ y)
return self
@ -159,7 +164,7 @@ plt.show()
#1.4 Model Selection
# Split the data into training and validation sets
x_train, x_val, y_train, y_val = train_test_split(x, y_noisy, test_size=0.2, random_state=42)
x_train, x_val, y_train, y_val = train_test_split(x, y_noisy, test_size=0.3, random_state=100)
# range of basis functions to test
D_values = list(range(0, 46)) # 0 to 45
@ -175,12 +180,9 @@ for D in D_values:
model = GaussianRegression(sigma=1.0)
model.fit(x_train, y_train, D)
# predict on training then validation
# predict on training and validation set
yh_train = model.predict(x_train)
yh_train = yh_train.flatten() if yh_train.ndim > 1 else yh_train
yh_val = model.predict(x_val)
yh_val = yh_val.flatten() if yh_val.ndim > 1 else yh_val
# compute SSE
sse_train = np.sum((y_train - yh_train)**2)
@ -189,7 +191,172 @@ for D in D_values:
train_sse.append(sse_train)
val_sse.append(sse_val)
print(f"D={D:2d}: Train SSE = {sse_train:8.2f}, Val SSE = {sse_val:8.2f}")
print(f"D={D}: Train SSE={sse_train:.0f}, Val SSE={sse_val:.0f}")
optimal_D = D_values[int(np.argmin(val_sse))]
print(f"Optimal D on single split = {optimal_D}")
#optimal_sse = np.min(val_sse)
#MAYBE CAN ADD A MANUAL LOWER BOUND
# Plot training and validation SSE vs D for this single split
plt.figure(figsize=(12, 6))
plt.plot(D_values, train_sse, 'b-', label='Train SSE', linewidth=2, marker='o', markersize=4)
plt.plot(D_values, val_sse, 'r-', label='Validation SSE', linewidth=2, marker='s', markersize=4)
plt.axvline(x=optimal_D, color='g', linestyle='--', label=f'Optimal D = {optimal_D}')
#plt.scatter([optimal_D], [val_sse[optimal_D]], label=f"Opt D = {optimal_D}", zorder=5)
plt.xlabel('Number of Gaussian bases (D)')
plt.ylabel('Sum of Squared Errors (SSE)')
plt.title('Train and Validation SSE vs D (single split)')
plt.legend()
plt.grid(True, alpha=0.3)
plt.yscale('log')
plt.show()
# plot optimal model fit
plt.figure(figsize=(10, 4))
optimal_model = GaussianRegression(sigma=1.0)
yh_opt = optimal_model.fit(x_train, y_train, optimal_D)
yh_opt = optimal_model.predict(x_plot)
plt.plot(x_plot, true_function(x_plot), 'b-', label='True Function', linewidth=2)
plt.plot(x_train, y_train, 'bo', label='Training Data', alpha=0.6, markersize=4)
plt.plot(x_val, y_val, 'ro', label='Validation Data', alpha=0.6, markersize=4)
plt.plot(x_plot, yh_opt, 'g-', label=f'Optimal Model (D={optimal_D})', linewidth=2)
plt.ylim(-6, 6)
plt.title(f'Optimal Model with {optimal_D} Gaussian Basis Functions')
plt.ylabel('y')
plt.legend()
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
#__________________________________________________________________________________
#2. Bias-Variance Tradeoff with Multiple Fits
#sigma = (x.max() - x.min()) / D
n_repetitions = 10
D_values = [0, 5, 7, 10, 12, 15, 20, 25, 30, 45]
x = np.linspace(0, 10, 300)
# Initialize arrays to store results
train_errs = np.zeros((n_repetitions, len(D_values)))
test_errs = np.zeros((n_repetitions, len(D_values)))
predictions = np.zeros((n_repetitions, len(D_values), len(x)))
for rep in range(n_repetitions):
#create new dataset
x_data, y_true, y_data = generate_data(100, noise_std=1.0)
# split into train and test
x_train, x_test, y_train, y_test = train_test_split(x_data, y_data, test_size=0.3, random_state=rep)
for D_i, D in enumerate(D_values):
# fit model
model = GaussianRegression(sigma=1.0)
model.fit(x_train, y_train, D)
# predict on both sets
yh_train = model.predict(x_train)
yh_test = model.predict(x_test)
# compute and store errors (MSE)
train_err = np.mean((y_train - yh_train)**2)
test_err = np.mean((y_test - yh_test)**2)
train_errs[rep, D_i] = train_err
test_errs[rep, D_i] = test_err
# predict for visualization
yh_cont = model.predict(x)
predictions[rep, D_i, :] = yh_cont
# Plot 1: fitted models on the same plot, bias-variance tradeoff visualization
fig, axes = plt.subplots(2, 5, figsize=(25, 10))
axes = axes.flatten()
for D_i, D in enumerate(D_values):
ax = axes[D_i]
# plot individual fits
for rep in range(n_repetitions):
if train_errs[rep, D_i] != np.inf:
ax.plot(x, predictions[rep, D_i, :], color='green', alpha=0.3, linewidth=1)
# plot true function
ax.plot(x, true_function(x), 'b-', linewidth=3, label='True Function')
#plot average prediction
valid_predictions = [predictions[rep, D_i, :]
for rep in range(n_repetitions)
if train_errs[rep, D_i] != np.inf]
if valid_predictions:
avg_prediction = np.mean(valid_predictions, axis=0)
ax.plot(x, avg_prediction, 'r-', linewidth=2, label='Average Prediction')
ax.set_title(f'D = {D} Gaussian Bases')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_ylim(-4, 4)
ax.grid(True, alpha=0.3)
if D_i == 0:
ax.legend()
plt.tight_layout()
plt.suptitle('Bias-Variance tradeoff with 10 different fits',
fontsize=16, y=1.02)
plt.show()
# Plot 2: average training and test errors
plt.figure(figsize=(12, 6))
# Compute mean and std
avg_train_errors = np.mean(train_errs, axis=0)
avg_test_errors = np.mean(test_errs, axis=0)
std_train_errors = np.std(train_errs, axis=0)
std_test_errors = np.std(test_errs, axis=0)
# Plot with error bars
plt.errorbar(D_values, avg_train_errors, yerr=std_train_errors, label='Average Training Error', marker='o', capsize=5, linewidth=2)
plt.errorbar(D_values, avg_test_errors, yerr=std_test_errors, label='Average Test Error', marker='s', capsize=5, linewidth=2)
plt.xlabel('Number of Gaussian Basis Functions (D)')
plt.ylabel('Mean Squared Error')
plt.title('Average Training and Test Errors Across 10 Repetitions')
plt.legend()
plt.grid(True, alpha=0.3)
plt.yscale('log')
plt.xticks(D_values)
plt.show()