added task 1.3
This commit is contained in:
parent
e5cc1709c3
commit
67cec12191
1 changed files with 76 additions and 0 deletions
76
A2.py
76
A2.py
|
|
@ -86,3 +86,79 @@ plt.tight_layout()
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
#__________________________________________________________________________________
|
#__________________________________________________________________________________
|
||||||
|
#1.3 Model fitting
|
||||||
|
#for now I used the whole data but idk we that's what they asked for that part
|
||||||
|
class GaussianRegression:
|
||||||
|
"""Linear Regression with Gaussian Basis Functions"""
|
||||||
|
|
||||||
|
def __init__(self, sigma=1.0):
|
||||||
|
self.sigma = sigma
|
||||||
|
self.weights = None
|
||||||
|
self.mus = None
|
||||||
|
self.D = None
|
||||||
|
|
||||||
|
def fit(self, x_train, y_train, D):
|
||||||
|
# Store D for later use in predict
|
||||||
|
self.D = D
|
||||||
|
|
||||||
|
# create features for training and fit using least squares
|
||||||
|
X_train_basis = gaussian_features(x_train, D, self.sigma)
|
||||||
|
self.weights = np.linalg.lstsq(X_train_basis, y_train, rcond=None)[0]
|
||||||
|
|
||||||
|
return self
|
||||||
|
|
||||||
|
|
||||||
|
def predict(self, x_predict):
|
||||||
|
# create features for prediction and predict
|
||||||
|
X_predict_basis = gaussian_features(x_predict, self.D, self.sigma)
|
||||||
|
y_pred = X_predict_basis @ self.weights
|
||||||
|
|
||||||
|
return y_pred
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def true_function(x):
|
||||||
|
return (np.log(x + 1e-10) + 1) * np.cos(x) + np.sin(2*x)
|
||||||
|
|
||||||
|
# fit models with different numbers of basis functions and plot
|
||||||
|
D_i = [0, 2, 5, 10, 13, 15, 17, 20, 25, 30, 35, 45]
|
||||||
|
x_plot = np.linspace(0, 10, 300)
|
||||||
|
|
||||||
|
plt.figure(figsize=(18, 12))
|
||||||
|
|
||||||
|
for i, D in enumerate(D_i):
|
||||||
|
plt.subplot(4, 3, i+1)
|
||||||
|
|
||||||
|
# Create new model for each D value, fit and get predictions
|
||||||
|
model = GaussianRegression(sigma=1.0)
|
||||||
|
model.fit(x, y_noisy, D)
|
||||||
|
y_hat = model.predict(x_plot)
|
||||||
|
|
||||||
|
# Ensure y_hat is 1D and has same length as x_plot
|
||||||
|
y_hat = y_hat.flatten() if y_hat.ndim > 1 else y_hat
|
||||||
|
|
||||||
|
# Plot
|
||||||
|
plt.plot(x_plot, true_function(x_plot), 'b-', label='True Function', linewidth=2, alpha=0.7)
|
||||||
|
plt.plot(x, y_noisy, 'ro', label='Noisy Data', alpha=0.4, markersize=3)
|
||||||
|
plt.plot(x_plot, y_hat, 'g-', label=f'Fitted (D={D})', linewidth=2)
|
||||||
|
|
||||||
|
plt.ylim(-6, 6)
|
||||||
|
plt.title(f'D = {D}')
|
||||||
|
plt.grid(True, alpha=0.3)
|
||||||
|
plt.legend(fontsize=8)
|
||||||
|
|
||||||
|
# x and y labels
|
||||||
|
if i % 3 == 0:
|
||||||
|
plt.ylabel('y')
|
||||||
|
if i >= 9:
|
||||||
|
plt.xlabel('x')
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
plt.tight_layout()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#__________________________________________________________________________________
|
||||||
|
#1.4 Model Selection
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue