NET-Web-API-w-Angular/my-app/node_modules/hdr-histogram-js/dist/packedarray/PackedArrayContext.js

494 lines
24 KiB
JavaScript
Raw Normal View History

2024-02-09 00:38:41 +00:00
"use strict";
/*
* This is a TypeScript port of the original Java version, which was written by
* Gil Tene as described in
* https://github.com/HdrHistogram/HdrHistogram
* and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
Object.defineProperty(exports, "__esModule", { value: true });
exports.PackedArrayContext = exports.MINIMUM_INITIAL_PACKED_ARRAY_CAPACITY = void 0;
/**
* A packed-value, sparse array context used for storing 64 bit signed values.
*
* An array context is optimised for tracking sparsely set (as in mostly zeros) values that tend to not make
* use pof the full 64 bit value range even when they are non-zero. The array context's internal representation
* is such that the packed value at each virtual array index may be represented by 0-8 bytes of actual storage.
*
* An array context encodes the packed values in 8 "set trees" with each set tree representing one byte of the
* packed value at the virtual index in question. The {@link #getPackedIndex(int, int, boolean)} method is used
* to look up the byte-index corresponding to the given (set tree) value byte of the given virtual index, and can
* be used to add entries to represent that byte as needed. As a succesful {@link #getPackedIndex(int, int, boolean)}
* may require a resizing of the array, it can throw a {@link ResizeException} to indicate that the requested
* packed index cannot be found or added without a resize of the physical storage.
*
*/
exports.MINIMUM_INITIAL_PACKED_ARRAY_CAPACITY = 16;
const MAX_SUPPORTED_PACKED_COUNTS_ARRAY_LENGTH = Math.pow(2, 13) - 1; //(Short.MAX_VALUE / 4); TODO ALEX why ???
const SET_0_START_INDEX = 0;
const NUMBER_OF_SETS = 8;
const LEAF_LEVEL_SHIFT = 3;
const NON_LEAF_ENTRY_SLOT_INDICATORS_OFFSET = 0;
const NON_LEAF_ENTRY_HEADER_SIZE_IN_SHORTS = 1;
const PACKED_ARRAY_GROWTH_INCREMENT = 16;
const PACKED_ARRAY_GROWTH_FRACTION_POW2 = 4;
const { pow, ceil, log2, max } = Math;
const bitCount = (n) => {
var bits = 0;
while (n !== 0) {
bits += bitCount32(n | 0);
n /= 0x100000000;
}
return bits;
};
const bitCount32 = (n) => {
n = n - ((n >> 1) & 0x55555555);
n = (n & 0x33333333) + ((n >> 2) & 0x33333333);
return (((n + (n >> 4)) & 0xf0f0f0f) * 0x1010101) >> 24;
};
class PackedArrayContext {
constructor(virtualLength, initialPhysicalLength) {
this.populatedShortLength = 0;
this.topLevelShift = Number.MAX_VALUE; // Make it non-sensical until properly initialized.
this.physicalLength = Math.max(initialPhysicalLength, exports.MINIMUM_INITIAL_PACKED_ARRAY_CAPACITY);
this.isPacked =
this.physicalLength <= MAX_SUPPORTED_PACKED_COUNTS_ARRAY_LENGTH;
if (!this.isPacked) {
this.physicalLength = virtualLength;
}
this.array = new ArrayBuffer(this.physicalLength * 8);
this.initArrayViews(this.array);
this.init(virtualLength);
}
initArrayViews(array) {
this.byteArray = new Uint8Array(array);
this.shortArray = new Uint16Array(array);
this.longArray = new Float64Array(array);
}
init(virtualLength) {
if (!this.isPacked) {
// Deal with non-packed context init:
this.virtualLength = virtualLength;
return;
}
this.populatedShortLength = SET_0_START_INDEX + 8;
// Populate empty root entries, and point to them from the root indexes:
for (let i = 0; i < NUMBER_OF_SETS; i++) {
this.setAtShortIndex(SET_0_START_INDEX + i, 0);
}
this.setVirtualLength(virtualLength);
}
clear() {
this.byteArray.fill(0);
this.init(this.virtualLength);
}
copyAndIncreaseSize(newPhysicalArrayLength, newVirtualArrayLength) {
const ctx = new PackedArrayContext(newVirtualArrayLength, newPhysicalArrayLength);
if (this.isPacked) {
ctx.populateEquivalentEntriesWithEntriesFromOther(this);
}
return ctx;
}
getPopulatedShortLength() {
return this.populatedShortLength;
}
getPopulatedLongLength() {
return (this.getPopulatedShortLength() + 3) >> 2; // round up
}
setAtByteIndex(byteIndex, value) {
this.byteArray[byteIndex] = value;
}
getAtByteIndex(byteIndex) {
return this.byteArray[byteIndex];
}
/**
* add a byte value to a current byte value in the array
* @param byteIndex index of byte value to add to
* @param valueToAdd byte value to add
* @return the afterAddValue. ((afterAddValue & 0x100) != 0) indicates a carry.
*/
addAtByteIndex(byteIndex, valueToAdd) {
const newValue = this.byteArray[byteIndex] + valueToAdd;
this.byteArray[byteIndex] = newValue;
return newValue;
}
setPopulatedLongLength(newPopulatedLongLength) {
this.populatedShortLength = newPopulatedLongLength << 2;
}
getVirtualLength() {
return this.virtualLength;
}
length() {
return this.physicalLength;
}
setAtShortIndex(shortIndex, value) {
this.shortArray[shortIndex] = value;
}
setAtLongIndex(longIndex, value) {
this.longArray[longIndex] = value;
}
getAtShortIndex(shortIndex) {
return this.shortArray[shortIndex];
}
getIndexAtShortIndex(shortIndex) {
return this.shortArray[shortIndex];
}
setPackedSlotIndicators(entryIndex, newPackedSlotIndicators) {
this.setAtShortIndex(entryIndex + NON_LEAF_ENTRY_SLOT_INDICATORS_OFFSET, newPackedSlotIndicators);
}
getPackedSlotIndicators(entryIndex) {
return (this.shortArray[entryIndex + NON_LEAF_ENTRY_SLOT_INDICATORS_OFFSET] &
0xffff);
}
getIndexAtEntrySlot(entryIndex, slot) {
return this.getAtShortIndex(entryIndex + NON_LEAF_ENTRY_HEADER_SIZE_IN_SHORTS + slot);
}
setIndexAtEntrySlot(entryIndex, slot, newIndexValue) {
this.setAtShortIndex(entryIndex + NON_LEAF_ENTRY_HEADER_SIZE_IN_SHORTS + slot, newIndexValue);
}
expandArrayIfNeeded(entryLengthInLongs) {
const currentLength = this.length();
if (currentLength < this.getPopulatedLongLength() + entryLengthInLongs) {
const growthIncrement = max(entryLengthInLongs, PACKED_ARRAY_GROWTH_INCREMENT, this.getPopulatedLongLength() >> PACKED_ARRAY_GROWTH_FRACTION_POW2);
this.resizeArray(currentLength + growthIncrement);
}
}
newEntry(entryLengthInShorts) {
// Add entry at the end of the array:
const newEntryIndex = this.populatedShortLength;
this.expandArrayIfNeeded((entryLengthInShorts >> 2) + 1);
this.populatedShortLength = newEntryIndex + entryLengthInShorts;
for (let i = 0; i < entryLengthInShorts; i++) {
this.setAtShortIndex(newEntryIndex + i, -1); // Poison value -1. Must be overriden before reads
}
return newEntryIndex;
}
newLeafEntry() {
// Add entry at the end of the array:
let newEntryIndex;
newEntryIndex = this.getPopulatedLongLength();
this.expandArrayIfNeeded(1);
this.setPopulatedLongLength(newEntryIndex + 1);
this.setAtLongIndex(newEntryIndex, 0);
return newEntryIndex;
}
/**
* Consolidate entry with previous entry verison if one exists
*
* @param entryIndex The shortIndex of the entry to be consolidated
* @param previousVersionIndex the index of the previous version of the entry
*/
consolidateEntry(entryIndex, previousVersionIndex) {
const previousVersionPackedSlotsIndicators = this.getPackedSlotIndicators(previousVersionIndex);
// Previous version exists, needs consolidation
const packedSlotsIndicators = this.getPackedSlotIndicators(entryIndex);
const insertedSlotMask = packedSlotsIndicators ^ previousVersionPackedSlotsIndicators; // the only bit that differs
const slotsBelowBitNumber = packedSlotsIndicators & (insertedSlotMask - 1);
const insertedSlotIndex = bitCount(slotsBelowBitNumber);
const numberOfSlotsInEntry = bitCount(packedSlotsIndicators);
// Copy the entry slots from previous version, skipping the newly inserted slot in the target:
let sourceSlot = 0;
for (let targetSlot = 0; targetSlot < numberOfSlotsInEntry; targetSlot++) {
if (targetSlot !== insertedSlotIndex) {
const indexAtSlot = this.getIndexAtEntrySlot(previousVersionIndex, sourceSlot);
if (indexAtSlot !== 0) {
this.setIndexAtEntrySlot(entryIndex, targetSlot, indexAtSlot);
}
sourceSlot++;
}
}
}
/**
* Expand entry as indicated.
*
* @param existingEntryIndex the index of the entry
* @param entryPointerIndex index to the slot pointing to the entry (needs to be fixed up)
* @param insertedSlotIndex realtive [packed] index of slot being inserted into entry
* @param insertedSlotMask mask value fo slot being inserted
* @param nextLevelIsLeaf the level below this one is a leaf level
* @return the updated index of the entry (-1 if epansion failed due to conflict)
* @throws RetryException if expansion fails due to concurrent conflict, and caller should try again.
*/
expandEntry(existingEntryIndex, entryPointerIndex, insertedSlotIndex, insertedSlotMask, nextLevelIsLeaf) {
let packedSlotIndicators = this.getAtShortIndex(existingEntryIndex) & 0xffff;
packedSlotIndicators |= insertedSlotMask;
const numberOfslotsInExpandedEntry = bitCount(packedSlotIndicators);
if (insertedSlotIndex >= numberOfslotsInExpandedEntry) {
throw new Error("inserted slot index is out of range given provided masks");
}
const expandedEntryLength = numberOfslotsInExpandedEntry + NON_LEAF_ENTRY_HEADER_SIZE_IN_SHORTS;
// Create new next-level entry to refer to from slot at this level:
let indexOfNewNextLevelEntry = 0;
if (nextLevelIsLeaf) {
indexOfNewNextLevelEntry = this.newLeafEntry(); // Establish long-index to new leaf entry
}
else {
// TODO: Optimize this by creating the whole sub-tree here, rather than a step that will immediaterly expand
// Create a new 1 word (empty, no slots set) entry for the next level:
indexOfNewNextLevelEntry = this.newEntry(NON_LEAF_ENTRY_HEADER_SIZE_IN_SHORTS); // Establish short-index to new leaf entry
this.setPackedSlotIndicators(indexOfNewNextLevelEntry, 0);
}
const insertedSlotValue = indexOfNewNextLevelEntry;
const expandedEntryIndex = this.newEntry(expandedEntryLength);
// populate the packed indicators word:
this.setPackedSlotIndicators(expandedEntryIndex, packedSlotIndicators);
// Populate the inserted slot with the index of the new next level entry:
this.setIndexAtEntrySlot(expandedEntryIndex, insertedSlotIndex, insertedSlotValue);
this.setAtShortIndex(entryPointerIndex, expandedEntryIndex);
this.consolidateEntry(expandedEntryIndex, existingEntryIndex);
return expandedEntryIndex;
}
//
// ###### ######## ######## ## ## ### ## ## #### ## ## ######## ######## ## ##
// ## ## ## ## ## ## ## ## ## ## ## ### ## ## ## ## ## ##
// ## ## ## ## ## ## ## ## ## ## #### ## ## ## ## ## ##
// ## #### ###### ## ## ## ## ## ## ## ## ## ## ## ## ## ###### ###
// ## ## ## ## ## ## ######### ## ## ## ## #### ## ## ## ## ##
// ## ## ## ## ## ## ## ## ## ## ## ## ### ## ## ## ## ##
// ###### ######## ## ### ## ## ######## ## #### ## ## ######## ######## ## ##
//
getRootEntry(setNumber, insertAsNeeded = false) {
const entryPointerIndex = SET_0_START_INDEX + setNumber;
let entryIndex = this.getIndexAtShortIndex(entryPointerIndex);
if (entryIndex == 0) {
if (!insertAsNeeded) {
return 0; // Index does not currently exist in packed array;
}
entryIndex = this.newEntry(NON_LEAF_ENTRY_HEADER_SIZE_IN_SHORTS);
// Create a new empty (no slots set) entry for the next level:
this.setPackedSlotIndicators(entryIndex, 0);
this.setAtShortIndex(entryPointerIndex, entryIndex);
}
return entryIndex;
}
/**
* Get the byte-index (into the packed array) corresponding to a given (set tree) value byte of given virtual index.
* Inserts new set tree nodes as needed if indicated.
*
* @param setNumber The set tree number (0-7, 0 corresponding with the LSByte set tree)
* @param virtualIndex The virtual index into the PackedArray
* @param insertAsNeeded If true, will insert new set tree nodes as needed if they do not already exist
* @return the byte-index corresponding to the given (set tree) value byte of the given virtual index
*/
getPackedIndex(setNumber, virtualIndex, insertAsNeeded) {
if (virtualIndex >= this.virtualLength) {
throw new Error(`Attempting access at index ${virtualIndex}, beyond virtualLength ${this.virtualLength}`);
}
let entryPointerIndex = SET_0_START_INDEX + setNumber; // TODO init needed ?
let entryIndex = this.getRootEntry(setNumber, insertAsNeeded);
if (entryIndex == 0) {
return -1; // Index does not currently exist in packed array;
}
// Work down the levels of non-leaf entries:
for (let indexShift = this.topLevelShift; indexShift >= LEAF_LEVEL_SHIFT; indexShift -= 4) {
const nextLevelIsLeaf = indexShift === LEAF_LEVEL_SHIFT;
// Target is a packedSlotIndicators entry
const packedSlotIndicators = this.getPackedSlotIndicators(entryIndex);
const slotBitNumber = (virtualIndex / pow(2, indexShift)) & 0xf; //(virtualIndex >>> indexShift) & 0xf;
const slotMask = 1 << slotBitNumber;
const slotsBelowBitNumber = packedSlotIndicators & (slotMask - 1);
const slotNumber = bitCount(slotsBelowBitNumber);
if ((packedSlotIndicators & slotMask) === 0) {
// The entryIndex slot does not have the contents we want
if (!insertAsNeeded) {
return -1; // Index does not currently exist in packed array;
}
// Expand the entry, adding the index to new entry at the proper slot:
entryIndex = this.expandEntry(entryIndex, entryPointerIndex, slotNumber, slotMask, nextLevelIsLeaf);
}
// Next level's entry pointer index is in the appropriate slot in in the entries array in this entry:
entryPointerIndex =
entryIndex + NON_LEAF_ENTRY_HEADER_SIZE_IN_SHORTS + slotNumber;
entryIndex = this.getIndexAtShortIndex(entryPointerIndex);
}
// entryIndex is the long-index of a leaf entry that contains the value byte for the given set
const byteIndex = (entryIndex << 3) + (virtualIndex & 0x7); // Determine byte index offset within leaf entry
return byteIndex;
}
determineTopLevelShiftForVirtualLength(virtualLength) {
const sizeMagnitude = ceil(log2(virtualLength));
const eightsSizeMagnitude = sizeMagnitude - 3;
let multipleOfFourSizeMagnitude = ceil(eightsSizeMagnitude / 4) * 4;
multipleOfFourSizeMagnitude = max(multipleOfFourSizeMagnitude, 8);
const topLevelShiftNeeded = multipleOfFourSizeMagnitude - 4 + 3;
return topLevelShiftNeeded;
}
setVirtualLength(virtualLength) {
if (!this.isPacked) {
throw new Error("Should never be adjusting the virtual size of a non-packed context");
}
this.topLevelShift = this.determineTopLevelShiftForVirtualLength(virtualLength);
this.virtualLength = virtualLength;
}
getTopLevelShift() {
return this.topLevelShift;
}
//
// ## ## ######## ####### ######## ## ## ## ### ######## ########
// ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
// ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
// ### ####### ######## ## ## ######## ## ## ## ## ## ## ######
// ## ## ## ## ## ## ## ## ## ######### ## ##
// ## ## ## ## ## ## ## ## ## ## ## ## ##
// ## ## ## ####### ## ####### ######## ## ## ## ########
//
resizeArray(newLength) {
const tmp = new Uint8Array(newLength * 8);
tmp.set(this.byteArray);
this.array = tmp.buffer;
this.initArrayViews(this.array);
this.physicalLength = newLength;
}
populateEquivalentEntriesWithEntriesFromOther(other) {
if (this.virtualLength < other.getVirtualLength()) {
throw new Error("Cannot populate array of smaller virtual length");
}
for (let i = 0; i < NUMBER_OF_SETS; i++) {
const otherEntryIndex = other.getAtShortIndex(SET_0_START_INDEX + i);
if (otherEntryIndex == 0)
continue; // No tree to duplicate
let entryIndexPointer = SET_0_START_INDEX + i;
for (let i = this.topLevelShift; i > other.topLevelShift; i -= 4) {
// for each inserted level:
// Allocate entry in other:
const sizeOfEntry = NON_LEAF_ENTRY_HEADER_SIZE_IN_SHORTS + 1;
const newEntryIndex = this.newEntry(sizeOfEntry);
// Link new level in.
this.setAtShortIndex(entryIndexPointer, newEntryIndex);
// Populate new level entry, use pointer to slot 0 as place to populate under:
this.setPackedSlotIndicators(newEntryIndex, 0x1); // Slot 0 populated
entryIndexPointer =
newEntryIndex + NON_LEAF_ENTRY_HEADER_SIZE_IN_SHORTS; // Where the slot 0 index goes.
}
this.copyEntriesAtLevelFromOther(other, otherEntryIndex, entryIndexPointer, other.topLevelShift);
}
}
copyEntriesAtLevelFromOther(other, otherLevelEntryIndex, levelEntryIndexPointer, otherIndexShift) {
const nextLevelIsLeaf = otherIndexShift == LEAF_LEVEL_SHIFT;
const packedSlotIndicators = other.getPackedSlotIndicators(otherLevelEntryIndex);
const numberOfSlots = bitCount(packedSlotIndicators);
const sizeOfEntry = NON_LEAF_ENTRY_HEADER_SIZE_IN_SHORTS + numberOfSlots;
const entryIndex = this.newEntry(sizeOfEntry);
this.setAtShortIndex(levelEntryIndexPointer, entryIndex);
this.setAtShortIndex(entryIndex + NON_LEAF_ENTRY_SLOT_INDICATORS_OFFSET, packedSlotIndicators);
for (let i = 0; i < numberOfSlots; i++) {
if (nextLevelIsLeaf) {
// Make leaf in other:
const leafEntryIndex = this.newLeafEntry();
this.setIndexAtEntrySlot(entryIndex, i, leafEntryIndex);
// OPTIM
// avoid iteration on all the values of the source ctx
const otherNextLevelEntryIndex = other.getIndexAtEntrySlot(otherLevelEntryIndex, i);
this.longArray[leafEntryIndex] =
other.longArray[otherNextLevelEntryIndex];
}
else {
const otherNextLevelEntryIndex = other.getIndexAtEntrySlot(otherLevelEntryIndex, i);
this.copyEntriesAtLevelFromOther(other, otherNextLevelEntryIndex, entryIndex + NON_LEAF_ENTRY_HEADER_SIZE_IN_SHORTS + i, otherIndexShift - 4);
}
}
}
getAtUnpackedIndex(index) {
return this.longArray[index];
}
setAtUnpackedIndex(index, newValue) {
this.longArray[index] = newValue;
}
lazysetAtUnpackedIndex(index, newValue) {
this.longArray[index] = newValue;
}
incrementAndGetAtUnpackedIndex(index) {
this.longArray[index]++;
return this.longArray[index];
}
addAndGetAtUnpackedIndex(index, valueToAdd) {
this.longArray[index] += valueToAdd;
return this.longArray[index];
}
//
// ######## ####### ###### ######## ######## #### ## ## ######
// ## ## ## ## ## ## ## ## ## ### ## ## ##
// ## ## ## ## ## ## ## ## #### ## ##
// ## ## ## ####### ###### ## ######## ## ## ## ## ## ####
// ## ## ## ## ## ## ## ## ## #### ## ##
// ## ## ## ## ## ## ## ## ## ## ### ## ##
// ## ####### ###### ## ## ## #### ## ## ######
//
nonLeafEntryToString(entryIndex, indexShift, indentLevel) {
let output = "";
for (let i = 0; i < indentLevel; i++) {
output += " ";
}
try {
const packedSlotIndicators = this.getPackedSlotIndicators(entryIndex);
output += `slotIndiators: 0x${toHex(packedSlotIndicators)}, prevVersionIndex: 0: [ `;
const numberOfslotsInEntry = bitCount(packedSlotIndicators);
for (let i = 0; i < numberOfslotsInEntry; i++) {
output += this.getIndexAtEntrySlot(entryIndex, i);
if (i < numberOfslotsInEntry - 1) {
output += ", ";
}
}
output += ` ] (indexShift = ${indexShift})\n`;
const nextLevelIsLeaf = indexShift == LEAF_LEVEL_SHIFT;
for (let i = 0; i < numberOfslotsInEntry; i++) {
const nextLevelEntryIndex = this.getIndexAtEntrySlot(entryIndex, i);
if (nextLevelIsLeaf) {
output += this.leafEntryToString(nextLevelEntryIndex, indentLevel + 4);
}
else {
output += this.nonLeafEntryToString(nextLevelEntryIndex, indexShift - 4, indentLevel + 4);
}
}
}
catch (ex) {
output += `Exception thrown at nonLeafEnty at index ${entryIndex} with indexShift ${indexShift}\n`;
}
return output;
}
leafEntryToString(entryIndex, indentLevel) {
let output = "";
for (let i = 0; i < indentLevel; i++) {
output += " ";
}
try {
output += "Leaf bytes : ";
for (let i = 0; i < 8; i++) {
output += `0x${toHex(this.byteArray[entryIndex * 8 + i])} `;
}
output += "\n";
}
catch (ex) {
output += `Exception thrown at leafEnty at index ${entryIndex}\n`;
}
return output;
}
toString() {
let output = "PackedArrayContext:\n";
if (!this.isPacked) {
return output + "Context is unpacked:\n"; // unpackedToString();
}
for (let setNumber = 0; setNumber < NUMBER_OF_SETS; setNumber++) {
try {
const entryPointerIndex = SET_0_START_INDEX + setNumber;
const entryIndex = this.getIndexAtShortIndex(entryPointerIndex);
output += `Set ${setNumber}: root = ${entryIndex} \n`;
if (entryIndex == 0)
continue;
output += this.nonLeafEntryToString(entryIndex, this.topLevelShift, 4);
}
catch (ex) {
output += `Exception thrown in set ${setNumber}%d\n`;
}
}
//output += recordedValuesToString();
return output;
}
}
exports.PackedArrayContext = PackedArrayContext;
const toHex = (n) => {
return Number(n)
.toString(16)
.padStart(2, "0");
};
//# sourceMappingURL=PackedArrayContext.js.map