removed unnecessary comments
This commit is contained in:
parent
193dcabbff
commit
91e98ba8bc
4 changed files with 0 additions and 117 deletions
|
|
@ -169,31 +169,6 @@ if __name__ == "__main__":
|
|||
print("\nCorrelation with target variable descending order:")
|
||||
print(target_corr)
|
||||
|
||||
'''
|
||||
# repeated fields —> for now I removed them since might not be too relevant (need testing to see if we keep it later)
|
||||
Parkinson = Parkinson.drop(Parkinson.columns[0:3], axis=1)
|
||||
|
||||
# ____________________________________________________________________________________
|
||||
# HANDLE OUTLIERS AND INCONSISTENCIES
|
||||
# https://medium.com/@heyamit10/pandas-outlier-detection-techniques-e9afece3d9e3
|
||||
# if z-score more than 3 --> outllier
|
||||
# print(Parkinson.head().to_string())
|
||||
|
||||
# ____________________________________________________________________________________
|
||||
|
||||
# normalize / scale features? if not already done
|
||||
# !!!!!!!!!!only for X not y!!!!!!!!!!!
|
||||
# normalize = Parkinson.drop(Parkinson.columns[0:6], axis=1)
|
||||
# normalize = (normalize - normalize.mean()) / normalize.std()
|
||||
# Parkinson[Parkinson.columns[6:]] = normalize
|
||||
|
||||
# turn into array for regression
|
||||
x = x.to_numpy()
|
||||
y = y.to_numpy()
|
||||
|
||||
# split data into train 80% / tests datasets 20%
|
||||
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42, stratify=y)
|
||||
'''
|
||||
for col in df:
|
||||
df[col] = pd.to_numeric(df[col], errors='coerce') # convert columns to numeric values
|
||||
|
||||
|
|
|
|||
|
|
@ -200,10 +200,6 @@ class LogisticRegression:
|
|||
"""
|
||||
if isinstance(x, pd.DataFrame):
|
||||
x = x.values
|
||||
|
||||
if self.w is None:
|
||||
raise ValueError("Model not fitted yet")
|
||||
|
||||
# Add bias term if needed
|
||||
if x.shape[1] == len(self.w) - 1:
|
||||
x = np.column_stack([np.ones(x.shape[0]), x])
|
||||
|
|
@ -250,37 +246,7 @@ if __name__ == "__main__":
|
|||
df = df.drop_duplicates()
|
||||
# check data types: --> everything is good
|
||||
# print(df.dtypes)
|
||||
'''
|
||||
# ____________________________________________________________________________________
|
||||
# HANDLE OUTLIERS AND INCONSISTENCIES
|
||||
# https://medium.com/@heyamit10/pandas-outlier-detection-techniques-e9afece3d9e3
|
||||
# if z-score more than 3 --> outllier
|
||||
# print(cancer.head().to_string())
|
||||
|
||||
# ____________________________________________________________________________________
|
||||
|
||||
# separate dependent VS independent variables
|
||||
x = cancer.drop(cancer.columns[0], axis=1)
|
||||
y = cancer[1]
|
||||
|
||||
# print(x.head().to_string())
|
||||
|
||||
# normalize data
|
||||
# normalize = cancer.drop(cancer.columns[0], axis=1)
|
||||
# normalize = (normalize - normalize.mean()) / normalize.std()
|
||||
# cancer[cancer.columns[1:]] = normalize
|
||||
# print(cancer.head().to_string())
|
||||
|
||||
# turn into array for regression
|
||||
x = x.to_numpy()
|
||||
y = y.to_numpy()
|
||||
|
||||
# cancer_y = np.asarray(cancer2[0].tolist())
|
||||
# cancer2.drop(cancer2[0], axis = 1, inplace = True)
|
||||
|
||||
# split data into train / tests datasets
|
||||
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)
|
||||
'''
|
||||
missing_rows = df[df.isin(['?', 'NA', 'na', '']).any(axis=1)] # checks null values
|
||||
print(f"Rows with null values: {len(missing_rows)}")
|
||||
|
||||
|
|
|
|||
|
|
@ -171,31 +171,7 @@ if __name__ == "__main__":
|
|||
print("\nCorrelation with target variable descending order:")
|
||||
print(target_corr)
|
||||
|
||||
'''
|
||||
# repeated fields —> for now I removed them since might not be too relevant (need testing to see if we keep it later)
|
||||
Parkinson = Parkinson.drop(Parkinson.columns[0:3], axis=1)
|
||||
|
||||
# ____________________________________________________________________________________
|
||||
# HANDLE OUTLIERS AND INCONSISTENCIES
|
||||
# https://medium.com/@heyamit10/pandas-outlier-detection-techniques-e9afece3d9e3
|
||||
# if z-score more than 3 --> outllier
|
||||
# print(Parkinson.head().to_string())
|
||||
|
||||
# ____________________________________________________________________________________
|
||||
|
||||
# normalize / scale features? if not already done
|
||||
# !!!!!!!!!!only for X not y!!!!!!!!!!!
|
||||
# normalize = Parkinson.drop(Parkinson.columns[0:6], axis=1)
|
||||
# normalize = (normalize - normalize.mean()) / normalize.std()
|
||||
# Parkinson[Parkinson.columns[6:]] = normalize
|
||||
|
||||
# turn into array for regression
|
||||
x = x.to_numpy()
|
||||
y = y.to_numpy()
|
||||
|
||||
# split data into train 80% / tests datasets 20%
|
||||
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42, stratify=y)
|
||||
'''
|
||||
for col in df:
|
||||
df[col] = pd.to_numeric(df[col], errors='coerce') # convert columns to numeric values
|
||||
|
||||
|
|
|
|||
|
|
@ -219,9 +219,6 @@ class LogisticRegression:
|
|||
if isinstance(x, pd.DataFrame):
|
||||
x = x.values
|
||||
|
||||
if self.w is None:
|
||||
raise ValueError("Model not fitted yet")
|
||||
|
||||
# Add bias term if needed
|
||||
if x.shape[1] == len(self.w) - 1:
|
||||
x = np.column_stack([np.ones(x.shape[0]), x])
|
||||
|
|
@ -259,37 +256,6 @@ if __name__ == "__main__":
|
|||
# check data types: --> everything is good
|
||||
# print(df.dtypes)
|
||||
|
||||
'''
|
||||
# ____________________________________________________________________________________
|
||||
# HANDLE OUTLIERS AND INCONSISTENCIES
|
||||
# https://medium.com/@heyamit10/pandas-outlier-detection-techniques-e9afece3d9e3
|
||||
# if z-score more than 3 --> outllier
|
||||
# print(cancer.head().to_string())
|
||||
|
||||
# ____________________________________________________________________________________
|
||||
|
||||
# separate dependent VS independent variables
|
||||
x = cancer.drop(cancer.columns[0], axis=1)
|
||||
y = cancer[1]
|
||||
|
||||
# print(X.head().to_string())
|
||||
|
||||
# normalize data
|
||||
# normalize = cancer.drop(cancer.columns[0], axis=1)
|
||||
# normalize = (normalize - normalize.mean()) / normalize.std()
|
||||
# cancer[cancer.columns[1:]] = normalize
|
||||
# print(cancer.head().to_string())
|
||||
|
||||
# turn into array for regression
|
||||
x = x.to_numpy()
|
||||
y = y.to_numpy()
|
||||
|
||||
# cancer_y = np.asarray(cancer2[0].tolist())
|
||||
# cancer2.drop(cancer2[0], axis = 1, inplace = True)
|
||||
|
||||
# split data into train / tests datasets
|
||||
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42, stratify=y)
|
||||
'''
|
||||
missing_rows = df[df.isin(['?', 'NA', 'na', '']).any(axis=1)] # checks null values
|
||||
print(f"Rows with null values: {len(missing_rows)}")
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue