Updated the mini batch as well.

This commit is contained in:
Batuhan Berk Başoğlu 2025-09-26 21:04:37 -04:00
parent 7268194bea
commit 1eb6609e9f
Signed by: batuhan-basoglu
SSH key fingerprint: SHA256:kEsnuHX+qbwhxSAXPUQ4ox535wFHu/hIRaa53FzxRpo
2 changed files with 70 additions and 17 deletions

View file

@ -122,18 +122,70 @@ if __name__ == "__main__":
df.replace(['?','NA', 'na', ''], pd.NA, inplace=True) # replace null values with NA identifier
num_cols = [
'age', 'sex', 'test_time', 'motor_UPDRS', 'total_UPDRS',
'Jitter(%)', 'Jitter(Abs)', 'Jitter:RAP', 'Jitter:PPQ5', 'Jitter:DDP',
'Shimmer', 'Shimmer(dB)', 'Shimmer:APQ3', 'Shimmer:APQ5',
'Shimmer:APQ11', 'Shimmer:DDA', 'NHR', 'HNR', 'RPDE', 'DFA', 'PPE'
]
# check data types --> no problem
# print(df.dtypes)
for col in num_cols:
# duplicates rows???
duplicates = df.duplicated().sum()
print(f"Num of duplicated rows:", duplicates)
# no duplicates but just in case:
df = df.drop_duplicates()
# check for highly correlated features --> ensure uniqueness of solution
# find them then note for 3rd phase
#Further experiments
# 0 indicates no correlation and 1 indicates perfect correlation
corr_matrix = df.corr().abs()
upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))
# find features with correlation greater than 0.95
high_corr_features = []
for col in upper.columns:
high_corr = upper[col][upper[col] > 0.95]
if not high_corr.empty:
high_corr_features.append((col, high_corr.index.tolist()))
if high_corr_features:
print("\ncorrelated features (>0.95):")
for feature, correlated_with in high_corr_features:
print(f" {feature} AND {correlated_with}")
# check for weak correlation with target
target_corr = df.corr()['motor_UPDRS'].abs().sort_values(ascending=False)
print("\nCorrelation with target variable descending order:")
print(target_corr)
'''
# repeated fields —> for now I removed them since might not be too relevant (need testing to see if we keep it later)
Parkinson = Parkinson.drop(Parkinson.columns[0:3], axis=1)
# ____________________________________________________________________________________
# HANDLE OUTLIERS AND INCONSISTENCIES
# https://medium.com/@heyamit10/pandas-outlier-detection-techniques-e9afece3d9e3
# if z-score more than 3 --> outllier
# print(Parkinson.head().to_string())
# ____________________________________________________________________________________
# normalize / scale features? if not already done
# !!!!!!!!!!only for X not y!!!!!!!!!!!
# normalize = Parkinson.drop(Parkinson.columns[0:6], axis=1)
# normalize = (normalize - normalize.mean()) / normalize.std()
# Parkinson[Parkinson.columns[6:]] = normalize
# turn into array for regression
x = x.to_numpy()
y = y.to_numpy()
# split data into train 80% / tests datasets 20%
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42, stratify=y)
'''
for col in df:
df[col] = pd.to_numeric(df[col], errors='coerce') # convert columns to numeric values
df.dropna(inplace=True) # remove null values
print(f"Rows remaining after drop of the null values: {len(df)}\n")
print(f"\nRows remaining after drop of the null values: {len(df)}\n")
# sanity checks for data validity - realistic parkinson data range estimations
df = df[(df['age'] >= 18) & (df['age'] <= 95)]
@ -148,9 +200,10 @@ if __name__ == "__main__":
assert df.isna().sum().sum() == 0, "There are still some null values."
# split the X and Y values
target = 'total_UPDRS'
x = df.drop(columns=[target])
y = df[target]
feature_columns = [col for col in df.columns if col not in ['motor_UPDRS', 'total_UPDRS', 'subject#']]
x = df[feature_columns]
y = df['motor_UPDRS']
# train / test splitting (80 / 20)
n_train = int(0.8 * len(x))
@ -173,4 +226,4 @@ if __name__ == "__main__":
# weight report
print("\nWeights from the model:")
print(model.w)
print(model.w)