import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pyplot as plt import os class CNN: def __init__(self, device=None): self.device = device or torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model = self._build_model().to(self.device) self.criterion = nn.CrossEntropyLoss() # cross entropy is used for loss from torch self.optimizer = optim.Adam(self.model.parameters(), lr=0.001) # adam is used for optimization from torch def _build_model(self): class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, padding=1) # convolutional layer 1 self.conv2 = nn.Conv2d(32, 64, 3, padding=1) # convolutional layer 2 self.fc1 = nn.Linear(64 * 7 * 7, 256) # hidden layer with 256 units self.fc2 = nn.Linear(256, 10) # output layer self.relu = nn.ReLU() # ReLU activation from torch self.pool = nn.MaxPool2d(2, 2) # pooling from torch def forward(self, x): # forwards pass through the network x = self.relu(self.conv1(x)) x = self.pool(x) x = self.relu(self.conv2(x)) x = self.pool(x) x = x.view(x.size(0), -1) x = self.relu(self.fc1(x)) x = self.fc2(x) return x return Net() def fit(self, train_loader, val_loader, epochs=10): self.train_losses = [] self.val_accuracies = [] for epoch in range(1, epochs + 1): self.model.train() epoch_loss = 0.0 for images, labels in train_loader: images, labels = images.to(self.device), labels.to(self.device) self.optimizer.zero_grad() outputs = self.model(images) loss = self.criterion(outputs, labels) loss.backward() self.optimizer.step() epoch_loss += loss.item() # updating the epoch loss self.train_losses.append(epoch_loss) val_acc = self.evaluate(val_loader) self.val_accuracies.append(val_acc) print(f"Epoch {epoch:02d} | Training Loss: {epoch_loss:.4f} | Validation Accuracy: {val_acc:.4f}") self.plot_graph(self.train_losses, self.val_accuracies) return self.val_accuracies[-1] def evaluate(self, loader): # measures the accuracy of your model on a given dataset self.model.eval() correct = 0 total = 0 with torch.no_grad(): for images, labels in loader: images, labels = images.to(self.device), labels.to(self.device) outputs = self.model(images) preds = torch.argmax(outputs, dim=1) correct += (preds == labels).sum().item() total += labels.size(0) return correct / total def plot_graph(self, train_losses, val_accuracies): if not os.path.exists('results'): os.makedirs('results') # creates results director fig, ax1 = plt.subplots() # initializes the plot ax1.set_xlabel('Epochs') ax1.set_ylabel('Training Loss', color='tab:blue') ax1.plot(range(1, len(train_losses)+1), train_losses, color='tab:blue', label='Training Loss') ax1.tick_params(axis='y', labelcolor='tab:blue') # defines loss subplot ax2 = ax1.twinx() ax2.set_ylabel('Validation Accuracy', color='tab:orange') ax2.plot(range(1, len(val_accuracies)+1), val_accuracies, color='tab:orange', label='Validation Accuracy') ax2.tick_params(axis='y', labelcolor='tab:orange') # defines accuracy subplot plt.title('CNN Training Loss and Validation Accuracy over Epochs') result_path = 'results/experiment-7' # defines the file name fig.savefig(result_path) print(f"Graph saved to: {result_path}") def predict(self, loader): # returns the predicted class labels for all samples in the loader, instead of summarizing them as accuracy. self.model.eval() all_preds = [] with torch.no_grad(): for images, _ in loader: images = images.to(self.device) outputs = self.model(images) preds = torch.argmax(outputs, dim=1) all_preds.append(preds.cpu()) return torch.cat(all_preds) # pre-processing the images and defining the data augmentation transformations transform = transforms.Compose([ transforms.RandomRotation(20), # random rotations between -20 and 20 degrees transforms.RandomHorizontalFlip(), # random horizontal flip transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ]) # acquiring the FashionMNIST dataset train_set = datasets.FashionMNIST(root='.', train=True, download=True, transform=transform) test_set = datasets.FashionMNIST(root='.', train=False, download=True, transform=transform) # splits data using dataloader with 256 batches train_loader = DataLoader(train_set, batch_size=256, shuffle=True) test_loader = DataLoader(test_set, batch_size=256, shuffle=False) # CNN initialization and training the model cnn = CNN() cnn.fit(train_loader, test_loader, epochs=10) # tests the model test_acc = cnn.evaluate(test_loader) print(f"\nFinal test accuracy: {test_acc:.4f}")