Added the experiments 6 to 7 lol.

This commit is contained in:
Batuhan Berk Başoğlu 2025-11-19 01:52:17 -05:00
parent 6df733aab5
commit d4ae94a2b2
Signed by: batuhan-basoglu
SSH key fingerprint: SHA256:kEsnuHX+qbwhxSAXPUQ4ox535wFHu/hIRaa53FzxRpo
5 changed files with 273 additions and 19 deletions

View file

@ -0,0 +1,134 @@
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import os
class CNN:
def __init__(self, device=None):
self.device = device or torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.model = self._build_model().to(self.device)
self.criterion = nn.CrossEntropyLoss() # cross entropy is used for loss from torch
self.optimizer = optim.Adam(self.model.parameters(), lr=0.001) # adam is used for optimization from torch
def _build_model(self):
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, padding=1) # convolutional layer 1
self.conv2 = nn.Conv2d(32, 64, 3, padding=1) # convolutional layer 2
self.fc1 = nn.Linear(64 * 7 * 7, 256) # hidden layer with 256 units
self.fc2 = nn.Linear(256, 10) # output layer
self.relu = nn.ReLU() # ReLU activation from torch
self.pool = nn.MaxPool2d(2, 2) # pooling from torch
def forward(self, x):
# forwards pass through the network
x = self.relu(self.conv1(x))
x = self.pool(x)
x = self.relu(self.conv2(x))
x = self.pool(x)
x = x.view(x.size(0), -1)
x = self.relu(self.fc1(x))
x = self.fc2(x)
return x
return Net()
def fit(self, train_loader, val_loader, epochs=10):
self.train_losses = []
self.val_accuracies = []
for epoch in range(1, epochs + 1):
self.model.train()
epoch_loss = 0.0
for images, labels in train_loader:
images, labels = images.to(self.device), labels.to(self.device)
self.optimizer.zero_grad()
outputs = self.model(images)
loss = self.criterion(outputs, labels)
loss.backward()
self.optimizer.step()
epoch_loss += loss.item() # updating the epoch loss
self.train_losses.append(epoch_loss)
val_acc = self.evaluate(val_loader)
self.val_accuracies.append(val_acc)
print(f"Epoch {epoch:02d} | Training Loss: {epoch_loss:.4f} | Validation Accuracy: {val_acc:.4f}")
self.plot_graph(self.train_losses, self.val_accuracies)
return self.val_accuracies[-1]
def evaluate(self, loader):
# measures the accuracy of your model on a given dataset
self.model.eval()
correct = 0
total = 0
with torch.no_grad():
for images, labels in loader:
images, labels = images.to(self.device), labels.to(self.device)
outputs = self.model(images)
preds = torch.argmax(outputs, dim=1)
correct += (preds == labels).sum().item()
total += labels.size(0)
return correct / total
def plot_graph(self, train_losses, val_accuracies):
if not os.path.exists('results'):
os.makedirs('results') # creates results director
fig, ax1 = plt.subplots() # initializes the plot
ax1.set_xlabel('Epochs')
ax1.set_ylabel('Training Loss', color='tab:blue')
ax1.plot(range(1, len(train_losses)+1), train_losses, color='tab:blue', label='Training Loss')
ax1.tick_params(axis='y', labelcolor='tab:blue') # defines loss subplot
ax2 = ax1.twinx()
ax2.set_ylabel('Validation Accuracy', color='tab:orange')
ax2.plot(range(1, len(val_accuracies)+1), val_accuracies, color='tab:orange', label='Validation Accuracy')
ax2.tick_params(axis='y', labelcolor='tab:orange') # defines accuracy subplot
plt.title('CNN Training Loss and Validation Accuracy over Epochs')
result_path = 'results/experiment-6-convolutional-neural-network.png' # defines the file name
fig.savefig(result_path)
print(f"Graph saved to: {result_path}")
def predict(self, loader):
# returns the predicted class labels for all samples in the loader, instead of summarizing them as accuracy.
self.model.eval()
all_preds = []
with torch.no_grad():
for images, _ in loader:
images = images.to(self.device)
outputs = self.model(images)
preds = torch.argmax(outputs, dim=1)
all_preds.append(preds.cpu())
return torch.cat(all_preds)
# pre-processing the images
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
# acquiring the FashionMNIST dataset
train_set = datasets.FashionMNIST(root='.', train=True, download=True, transform=transform)
test_set = datasets.FashionMNIST(root='.', train=False, download=True, transform=transform)
# splits data using dataloader with 256 batches
train_loader = DataLoader(train_set, batch_size=256, shuffle=True)
test_loader = DataLoader(test_set, batch_size=256, shuffle=False)
# CNN initialization and training the model
cnn = CNN()
cnn.fit(train_loader, test_loader, epochs=10)
# tests the model
test_acc = cnn.evaluate(test_loader)
print(f"\nFinal test accuracy: {test_acc:.4f}")