diff --git a/.idea/workspace.xml b/.idea/workspace.xml
index 55c29c7..b4fe5ff 100644
--- a/.idea/workspace.xml
+++ b/.idea/workspace.xml
@@ -5,8 +5,9 @@
+
-
+
@@ -31,33 +32,33 @@
- {
+ "keyToString": {
+ "ModuleVcsDetector.initialDetectionPerformed": "true",
+ "Python.Unnamed.executor": "Run",
+ "Python.experiment-1-1.executor": "Run",
+ "Python.experiment-1-2.executor": "Run",
+ "Python.experiment-1.executor": "Run",
+ "Python.experiment-2-leaky-relu.executor": "Run",
+ "Python.experiment-2-tanh.executor": "Run",
+ "Python.experiment-2.executor": "Run",
+ "Python.experiment-3-l1.executor": "Run",
+ "Python.experiment-3-l2.executor": "Run",
+ "Python.experiment-3.executor": "Run",
+ "Python.experiment-4.executor": "Run",
+ "Python.experiment-5.executor": "Run",
+ "Python.experiment-6-convolutional-neural-network.executor": "Run",
+ "Python.experiment-7.executor": "Run",
+ "Python.experiment-8.executor": "Run",
+ "Python.multilayer-perceptron.executor": "Run",
+ "RunOnceActivity.ShowReadmeOnStart": "true",
+ "RunOnceActivity.TerminalTabsStorage.copyFrom.TerminalArrangementManager.252": "true",
+ "RunOnceActivity.git.unshallow": "true",
+ "git-widget-placeholder": "master",
+ "last_opened_file_path": "/home/arctichawk1/Desktop/Projects/Private/Classification-of-Image-Data-with-MLP-and-CNN",
+ "settings.editor.selected.configurable": "com.jetbrains.python.configuration.PyActiveSdkModuleConfigurable"
}
-}]]>
+}
diff --git a/hyperparameter-training.py b/hyperparameter-training.py
new file mode 100644
index 0000000..70ff266
--- /dev/null
+++ b/hyperparameter-training.py
@@ -0,0 +1,185 @@
+
+#learn rate and batch sizes
+for learn_rate in [1e-2,1e-3,1e-4]:
+ for batch_sizes in [64,128,256]:
+ import numpy as np
+ import matplotlib.pyplot as plt
+ from torchvision import datasets
+ import os
+
+
+ class MLP:
+ def __init__(self, input_size, hidden_size1, hidden_size2, output_size, weight_scale):
+ # initializes weights and biases for each layer
+ self.W1 = np.random.randn(input_size, hidden_size1) * weight_scale
+ self.b1 = np.zeros((1, hidden_size1))
+ self.W2 = np.random.randn(hidden_size1, hidden_size2) * weight_scale
+ self.b2 = np.zeros((1, hidden_size2))
+ self.W3 = np.random.randn(hidden_size2, output_size) * weight_scale
+ self.b3 = np.zeros((1, output_size))
+
+ def forward(self, x):
+ # forwards pass through the network
+ self.x = x # input for backpropagation
+ self.z1 = x @ self.W1 + self.b1 # linear transformation for layer 1
+ self.a1 = self.relu(self.z1) # ReLU activation
+ self.z2 = self.a1 @ self.W2 + self.b2 # linear transformation for layer 2
+ self.a2 = self.relu(self.z2) # ReLU activation
+ self.z3 = self.a2 @ self.W3 + self.b3 # linear transformation for layer 3
+ self.a3 = self.softmax(self.z3) # applies softmax to get class probabilities
+ return self.a3 # output of the network
+
+ def backward(self, y, lr):
+ # backwards pass for weight updates using gradient descent
+ m = y.shape[0]
+ y_one_hot = self.one_hot_encode(y, self.W3.shape[1]) # converts labels to one-hot encoding
+
+ # computes gradients for each layer
+ dz3 = self.a3 - y_one_hot # gradient for output layer
+ dw3 = (self.a2.T @ dz3) / m
+ db3 = np.sum(dz3, axis=0, keepdims=True) / m
+
+ dz2 = (dz3 @ self.W3.T) * self.relu_deriv(self.z2) # gradient for layer 2
+ dw2 = (self.a1.T @ dz2) / m
+ db2 = np.sum(dz2, axis=0, keepdims=True) / m
+
+ dz1 = (dz2 @ self.W2.T) * self.relu_deriv(self.z1) # gradient for layer 1
+ dw1 = (self.x.T @ dz1) / m
+ db1 = np.sum(dz1, axis=0, keepdims=True) / m
+
+ # updates weights and biases using gradient descent
+ self.W3 -= lr * dw3
+ self.b3 -= lr * db3
+ self.W2 -= lr * dw2
+ self.b2 -= lr * db2
+ self.W1 -= lr * dw1
+ self.b1 -= lr * db1
+
+ @staticmethod
+ def relu(x):
+ # ReLU activation
+ return np.maximum(0, x)
+
+ @staticmethod
+ def relu_deriv(x):
+ # derivation of ReLU activation for backpropagation
+ return (x > 0).astype(float)
+
+ @staticmethod
+ def softmax(x):
+ # softmax function normalizes outputs to probabilities
+ e_x = np.exp(x - np.max(x, axis=1, keepdims=True)) # exponentiates inputs
+ return e_x / np.sum(e_x, axis=1, keepdims=True) # normalizes to get probabilities
+
+ @staticmethod
+ def one_hot_encode(y, num_classes):
+ # converts labels to one-hot encoded format
+ return np.eye(num_classes)[y]
+
+ @staticmethod
+ def cross_entropy_loss(y, y_hat):
+ # computes cross-entropy loss between true labels and predicted probabilities
+ m = y.shape[0]
+ m = y.shape[0]
+ eps = 1e-12
+ y_hat_clipped = np.clip(y_hat, eps, 1. - eps)
+ log_probs = -np.log(y_hat_clipped[np.arange(m), y])
+ return np.mean(log_probs)
+
+ def fit(self, x_train, y_train, x_val, y_val, lr, epochs, batch_size):
+ train_losses = []
+ val_accuracies = []
+
+ for epoch in range(1, epochs + 1):
+ perm = np.random.permutation(x_train.shape[0]) # Shuffle the training data
+ x_train_shuffled, y_train_shuffled = x_train[perm], y_train[perm]
+
+ epoch_loss = 0.0
+ num_batches = int(np.ceil(x_train.shape[0] / batch_size))
+
+ for i in range(num_batches):
+ start = i * batch_size
+ end = start + batch_size
+ x_batch = x_train_shuffled[start:end] # batch of inputs
+ y_batch = y_train_shuffled[start:end] # batch of labels
+
+ # Forward pass, backward pass, and weight update
+ self.forward(x_batch)
+ self.backward(y_batch, lr)
+
+ epoch_loss += self.cross_entropy_loss(y_batch, self.a3) # updating the epoch loss
+
+ epoch_loss /= num_batches # average loss is defined
+ train_losses.append(epoch_loss)
+
+ val_pred = self.predict(x_val)
+ val_acc = np.mean(val_pred == y_val)
+ val_accuracies.append(val_acc) \
+
+ print(f"Epoch {epoch:02d} | Training Loss: {epoch_loss:.4f} | Value Accuracy: {val_acc:.4f}")
+
+ self.plot_graph(train_losses, val_accuracies)
+ return val_accuracies[-1]
+
+ def plot_graph(self, train_losses, val_accuracies):
+ if not os.path.exists('results'):
+ os.makedirs('results') # creates results director
+
+ fig, ax1 = plt.subplots() # initializes the plot
+
+ ax1.set_xlabel('Epochs')
+ ax1.set_ylabel('Training Loss', color='tab:blue')
+ ax1.plot(range(1, len(train_losses) + 1), train_losses, color='tab:blue', label='Training Loss')
+ ax1.tick_params(axis='y', labelcolor='tab:blue') # defines loss subplot
+
+ ax2 = ax1.twinx()
+ ax2.set_ylabel('Validation Accuracy', color='tab:orange')
+ ax2.plot(range(1, len(val_accuracies) + 1), val_accuracies, color='tab:orange', label='Validation Accuracy')
+ ax2.tick_params(axis='y', labelcolor='tab:orange') # defines accuracy subplot
+
+ plt.title('Training Loss and Validation Accuracy over Epochs')
+
+ result_path = 'results/hyperparameter-training-output.png' # defines the file name
+ fig.savefig(result_path)
+ print(f"Graph saved to: {result_path}")
+
+ def predict(self, x): # predicts class labels for the input data
+ probs = self.forward(x) # forwards pass to get probabilities
+ return np.argmax(probs, axis=1) # returns the class with highest probability
+
+ # acquiring the FashionMNIST dataset
+ train_set = datasets.FashionMNIST(root='.', train=True, download=True)
+ test_set = datasets.FashionMNIST(root='.', train=False, download=True)
+
+ # preprocessing the data by flattening images and normalizing them.
+ x_train = train_set.data.numpy().reshape(-1, 28 * 28).astype(np.float32) / 255.0
+ y_train = train_set.targets.numpy()
+
+ x_test = test_set.data.numpy().reshape(-1, 28 * 28).astype(np.float32) / 255.0
+ y_test = test_set.targets.numpy()
+
+ # MLP initialization
+ mlp = MLP(
+ input_size=28 * 28,
+ hidden_size1=256,
+ hidden_size2=256,
+ output_size=10,
+ weight_scale=1e-2
+ )
+
+ # trains the model
+ mlp.fit(
+ x_train=x_train,
+ y_train=y_train,
+ x_val=x_test,
+ y_val=y_test,
+ lr=learn_rate,
+ epochs=100,
+ batch_size=batch_sizes
+ )
+
+ # tests the model
+ test_pred = mlp.predict(x_test)
+ test_acc = np.mean(test_pred == y_test)
+ print("Test:" + str(learn_rate) + " "+ str(batch_sizes))
+ print(f"\nFinal test accuracy: {test_acc:.4f}")
\ No newline at end of file
diff --git a/results/experiment-8.png b/results/experiment-8.png
index c8cc6d7..0365ed5 100644
Binary files a/results/experiment-8.png and b/results/experiment-8.png differ
diff --git a/results/hyperparameter-training-output.png b/results/hyperparameter-training-output.png
new file mode 100644
index 0000000..c2fb3a2
Binary files /dev/null and b/results/hyperparameter-training-output.png differ