Added the experiment 1.
This commit is contained in:
parent
c2e8cfa06d
commit
901f472da1
9 changed files with 254 additions and 4 deletions
250
experiment-1.py
Normal file
250
experiment-1.py
Normal file
|
|
@ -0,0 +1,250 @@
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from torchvision import datasets
|
||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
|
class MLP:
|
||||||
|
def __init__(self, input_size, hidden_size1, hidden_size2, output_size, weight_scale):
|
||||||
|
# initializes weights and biases for each layer
|
||||||
|
self.has_hidden_layer2 = hidden_size2 > 0
|
||||||
|
|
||||||
|
# for 0 or 1 hidden layer:
|
||||||
|
self.W1 = np.random.randn(input_size, hidden_size1) * weight_scale
|
||||||
|
self.b1 = np.zeros((1, hidden_size1))
|
||||||
|
|
||||||
|
if self.has_hidden_layer2:
|
||||||
|
self.W2 = np.random.randn(hidden_size1, hidden_size2) * weight_scale
|
||||||
|
self.b2 = np.zeros((1, hidden_size2))
|
||||||
|
|
||||||
|
# output layer
|
||||||
|
self.W3 = np.random.randn(hidden_size2 if self.has_hidden_layer2 else hidden_size1, output_size) * weight_scale
|
||||||
|
self.b3 = np.zeros((1, output_size))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
# Forward pass through the network
|
||||||
|
self.x = x # input for backpropagation
|
||||||
|
self.z1 = x @ self.W1 + self.b1 # Linear transformation for first layer
|
||||||
|
self.a1 = self.relu(self.z1) # ReLU activation
|
||||||
|
|
||||||
|
if self.has_hidden_layer2:
|
||||||
|
self.z2 = self.a1 @ self.W2 + self.b2 # Linear transformation for second layer
|
||||||
|
self.a2 = self.relu(self.z2) # ReLU activation
|
||||||
|
self.z3 = self.a2 @ self.W3 + self.b3 # Linear transformation for output layer
|
||||||
|
else:
|
||||||
|
self.z3 = self.a1 @ self.W3 + self.b3 # No second layer, directly to output
|
||||||
|
|
||||||
|
self.a3 = self.softmax(self.z3) # Softmax to get class probabilities
|
||||||
|
return self.a3
|
||||||
|
|
||||||
|
def backward(self, y, lr):
|
||||||
|
# Backward pass for weight updates using gradient descent
|
||||||
|
m = y.shape[0]
|
||||||
|
y_one_hot = self.one_hot_encode(y, self.W3.shape[1]) # Converts labels to one-hot encoding
|
||||||
|
|
||||||
|
# Gradient for output layer
|
||||||
|
dz3 = self.a3 - y_one_hot
|
||||||
|
dw3 = (self.a2.T if self.has_hidden_layer2 else self.a1.T) @ dz3 / m
|
||||||
|
db3 = np.sum(dz3, axis=0, keepdims=True) / m
|
||||||
|
|
||||||
|
if self.has_hidden_layer2:
|
||||||
|
dz2 = (dz3 @ self.W3.T) * self.relu_deriv(self.z2) # Gradient for second hidden layer
|
||||||
|
dw2 = (self.a1.T @ dz2) / m
|
||||||
|
db2 = np.sum(dz2, axis=0, keepdims=True) / m
|
||||||
|
dz1 = (dz2 @ self.W2.T) * self.relu_deriv(self.z1) # Gradient for first hidden layer
|
||||||
|
else:
|
||||||
|
dz1 = (dz3 @ self.W3.T) * self.relu_deriv(self.z1) # No second hidden layer
|
||||||
|
|
||||||
|
dw1 = (self.x.T @ dz1) / m
|
||||||
|
db1 = np.sum(dz1, axis=0, keepdims=True) / m
|
||||||
|
|
||||||
|
# Update weights and biases using gradient descent
|
||||||
|
self.W3 -= lr * dw3
|
||||||
|
self.b3 -= lr * db3
|
||||||
|
if self.has_hidden_layer2:
|
||||||
|
self.W2 -= lr * dw2
|
||||||
|
self.b2 -= lr * db2
|
||||||
|
self.W1 -= lr * dw1
|
||||||
|
self.b1 -= lr * db1
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def relu(x):
|
||||||
|
# ReLU activation
|
||||||
|
return np.maximum(0, x)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def relu_deriv(x):
|
||||||
|
# derivation of ReLU activation for backpropagation
|
||||||
|
return (x > 0).astype(float)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def softmax(x):
|
||||||
|
# softmax function normalizes outputs to probabilities
|
||||||
|
e_x = np.exp(x - np.max(x, axis=1, keepdims=True)) # exponentiates inputs
|
||||||
|
return e_x / np.sum(e_x, axis=1, keepdims=True) # normalizes to get probabilities
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def one_hot_encode(y, num_classes):
|
||||||
|
# converts labels to one-hot encoded format
|
||||||
|
return np.eye(num_classes)[y]
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def cross_entropy_loss(y, y_hat):
|
||||||
|
# computes cross-entropy loss between true labels and predicted probabilities
|
||||||
|
m = y.shape[0]
|
||||||
|
m = y.shape[0]
|
||||||
|
eps = 1e-12
|
||||||
|
y_hat_clipped = np.clip(y_hat, eps, 1. - eps)
|
||||||
|
log_probs = -np.log(y_hat_clipped[np.arange(m), y])
|
||||||
|
return np.mean(log_probs)
|
||||||
|
|
||||||
|
def fit(self, x_train, y_train, x_val, y_val, lr, epochs, batch_size, number):
|
||||||
|
train_losses = []
|
||||||
|
val_accuracies = []
|
||||||
|
|
||||||
|
for epoch in range(1, epochs + 1):
|
||||||
|
perm = np.random.permutation(x_train.shape[0]) # Shuffle the training data
|
||||||
|
x_train_shuffled, y_train_shuffled = x_train[perm], y_train[perm]
|
||||||
|
|
||||||
|
epoch_loss = 0.0
|
||||||
|
num_batches = int(np.ceil(x_train.shape[0] / batch_size))
|
||||||
|
|
||||||
|
for i in range(num_batches):
|
||||||
|
start = i * batch_size
|
||||||
|
end = start + batch_size
|
||||||
|
x_batch = x_train_shuffled[start:end] # batch of inputs
|
||||||
|
y_batch = y_train_shuffled[start:end] # batch of labels
|
||||||
|
|
||||||
|
# Forward pass, backward pass, and weight update
|
||||||
|
self.forward(x_batch)
|
||||||
|
self.backward(y_batch, lr)
|
||||||
|
|
||||||
|
epoch_loss += self.cross_entropy_loss(y_batch, self.a3) # updating the epoch loss
|
||||||
|
|
||||||
|
epoch_loss /= num_batches # average loss is defined
|
||||||
|
train_losses.append(epoch_loss)
|
||||||
|
|
||||||
|
val_pred = self.predict(x_val)
|
||||||
|
val_acc = np.mean(val_pred == y_val)
|
||||||
|
val_accuracies.append(val_acc) \
|
||||||
|
|
||||||
|
print(f"Epoch {epoch:02d} | Training Loss: {epoch_loss:.4f} | Value Accuracy: {val_acc:.4f}")
|
||||||
|
|
||||||
|
self.plot_graph(train_losses, val_accuracies, number)
|
||||||
|
return val_accuracies[-1]
|
||||||
|
|
||||||
|
def plot_graph(self, train_losses, val_accuracies, number):
|
||||||
|
if not os.path.exists('results'):
|
||||||
|
os.makedirs('results') # creates results director
|
||||||
|
|
||||||
|
fig, ax1 = plt.subplots() # initializes the plot
|
||||||
|
|
||||||
|
ax1.set_xlabel('Epochs')
|
||||||
|
ax1.set_ylabel('Training Loss', color='tab:blue')
|
||||||
|
ax1.plot(range(1, len(train_losses) + 1), train_losses, color='tab:blue', label='Training Loss')
|
||||||
|
ax1.tick_params(axis='y', labelcolor='tab:blue') # defines loss subplot
|
||||||
|
|
||||||
|
ax2 = ax1.twinx()
|
||||||
|
ax2.set_ylabel('Validation Accuracy', color='tab:orange')
|
||||||
|
ax2.plot(range(1, len(val_accuracies) + 1), val_accuracies, color='tab:orange', label='Validation Accuracy')
|
||||||
|
ax2.tick_params(axis='y', labelcolor='tab:orange') # defines accuracy subplot
|
||||||
|
|
||||||
|
plt.title('Training Loss and Validation Accuracy over Epochs')
|
||||||
|
|
||||||
|
result_path = 'results/experiment-1-' + str(number) + '.png' # defines the file name
|
||||||
|
fig.savefig(result_path)
|
||||||
|
print(f"Graph saved to: {result_path}")
|
||||||
|
|
||||||
|
def predict(self, x): # predicts class labels for the input data
|
||||||
|
probs = self.forward(x) # forwards pass to get probabilities
|
||||||
|
return np.argmax(probs, axis=1) # returns the class with highest probability
|
||||||
|
|
||||||
|
|
||||||
|
# acquiring the FashionMNIST dataset
|
||||||
|
train_set = datasets.FashionMNIST(root='.', train=True, download=True)
|
||||||
|
test_set = datasets.FashionMNIST(root='.', train=False, download=True)
|
||||||
|
|
||||||
|
# preprocessing the data by flattening images and normalizing them.
|
||||||
|
x_train = train_set.data.numpy().reshape(-1, 28 * 28).astype(np.float32) / 255.0
|
||||||
|
y_train = train_set.targets.numpy()
|
||||||
|
|
||||||
|
x_test = test_set.data.numpy().reshape(-1, 28 * 28).astype(np.float32) / 255.0
|
||||||
|
y_test = test_set.targets.numpy()
|
||||||
|
|
||||||
|
# MLP initialization (no hidden layers)
|
||||||
|
mlp1 = MLP(
|
||||||
|
input_size=28 * 28,
|
||||||
|
hidden_size1=0,
|
||||||
|
hidden_size2=0,
|
||||||
|
output_size=10,
|
||||||
|
weight_scale=1e-2
|
||||||
|
)
|
||||||
|
|
||||||
|
# trains the model
|
||||||
|
mlp1.fit(
|
||||||
|
x_train=x_train,
|
||||||
|
y_train=y_train,
|
||||||
|
x_val=x_test,
|
||||||
|
y_val=y_test,
|
||||||
|
lr=1e-2,
|
||||||
|
epochs=10,
|
||||||
|
batch_size=256,
|
||||||
|
number = 1
|
||||||
|
)
|
||||||
|
|
||||||
|
# tests the model
|
||||||
|
test_pred1 = mlp1.predict(x_test)
|
||||||
|
test_acc1 = np.mean(test_pred1 == y_test)
|
||||||
|
print(f"\nFinal test accuracy: {test_acc1:.4f}")
|
||||||
|
|
||||||
|
# MLP initialization (one hidden layer)
|
||||||
|
mlp2 = MLP(
|
||||||
|
input_size=28 * 28,
|
||||||
|
hidden_size1=256,
|
||||||
|
hidden_size2=0,
|
||||||
|
output_size=10,
|
||||||
|
weight_scale=1e-2
|
||||||
|
)
|
||||||
|
|
||||||
|
# trains the model
|
||||||
|
mlp2.fit(
|
||||||
|
x_train=x_train,
|
||||||
|
y_train=y_train,
|
||||||
|
x_val=x_test,
|
||||||
|
y_val=y_test,
|
||||||
|
lr=1e-2,
|
||||||
|
epochs=10,
|
||||||
|
batch_size=256,
|
||||||
|
number = 2
|
||||||
|
)
|
||||||
|
|
||||||
|
# tests the model
|
||||||
|
test_pred2 = mlp2.predict(x_test)
|
||||||
|
test_acc2 = np.mean(test_pred2 == y_test)
|
||||||
|
print(f"\nFinal test accuracy: {test_acc2:.4f}")
|
||||||
|
|
||||||
|
# MLP initialization (two hidden layers)
|
||||||
|
mlp3 = MLP(
|
||||||
|
input_size=28 * 28,
|
||||||
|
hidden_size1=256,
|
||||||
|
hidden_size2=256,
|
||||||
|
output_size=10,
|
||||||
|
weight_scale=1e-2
|
||||||
|
)
|
||||||
|
|
||||||
|
# trains the model
|
||||||
|
mlp3.fit(
|
||||||
|
x_train=x_train,
|
||||||
|
y_train=y_train,
|
||||||
|
x_val=x_test,
|
||||||
|
y_val=y_test,
|
||||||
|
lr=1e-2,
|
||||||
|
epochs=10,
|
||||||
|
batch_size=256,
|
||||||
|
number = 3
|
||||||
|
)
|
||||||
|
|
||||||
|
# tests the model
|
||||||
|
test_pred3 = mlp3.predict(x_test)
|
||||||
|
test_acc3 = np.mean(test_pred3 == y_test)
|
||||||
|
print(f"\nFinal test accuracy: {test_acc3:.4f}")
|
||||||
|
|
@ -154,11 +154,11 @@ y_train = train_set.targets.numpy()
|
||||||
x_test = test_set.data.numpy().reshape(-1, 28 * 28).astype(np.float32) / 255.0
|
x_test = test_set.data.numpy().reshape(-1, 28 * 28).astype(np.float32) / 255.0
|
||||||
y_test = test_set.targets.numpy()
|
y_test = test_set.targets.numpy()
|
||||||
|
|
||||||
# MLP Initialization
|
# MLP initialization
|
||||||
mlp = MLP(
|
mlp = MLP(
|
||||||
input_size=28 * 28,
|
input_size=28 * 28,
|
||||||
hidden_size1=128,
|
hidden_size1=256,
|
||||||
hidden_size2=64,
|
hidden_size2=256,
|
||||||
output_size=10,
|
output_size=10,
|
||||||
weight_scale=1e-2
|
weight_scale=1e-2
|
||||||
)
|
)
|
||||||
|
|
@ -171,7 +171,7 @@ mlp.fit(
|
||||||
y_val=y_test,
|
y_val=y_test,
|
||||||
lr=1e-2,
|
lr=1e-2,
|
||||||
epochs=10,
|
epochs=10,
|
||||||
batch_size=128
|
batch_size=256
|
||||||
)
|
)
|
||||||
|
|
||||||
# tests the model
|
# tests the model
|
||||||
|
|
|
||||||
Binary file not shown.
|
Before Width: | Height: | Size: 38 KiB After Width: | Height: | Size: 37 KiB |
BIN
results/experiment-1-1.png
Normal file
BIN
results/experiment-1-1.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 39 KiB |
BIN
results/experiment-1-2.png
Normal file
BIN
results/experiment-1-2.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 38 KiB |
BIN
results/experiment-1-3.png
Normal file
BIN
results/experiment-1-3.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 37 KiB |
Loading…
Add table
Add a link
Reference in a new issue