Added the experiment 1.

This commit is contained in:
Batuhan Berk Başoğlu 2025-11-16 19:23:34 -05:00
parent c2e8cfa06d
commit 901f472da1
Signed by: batuhan-basoglu
SSH key fingerprint: SHA256:kEsnuHX+qbwhxSAXPUQ4ox535wFHu/hIRaa53FzxRpo
9 changed files with 254 additions and 4 deletions

250
experiment-1.py Normal file
View file

@ -0,0 +1,250 @@
import numpy as np
import matplotlib.pyplot as plt
from torchvision import datasets
import os
class MLP:
def __init__(self, input_size, hidden_size1, hidden_size2, output_size, weight_scale):
# initializes weights and biases for each layer
self.has_hidden_layer2 = hidden_size2 > 0
# for 0 or 1 hidden layer:
self.W1 = np.random.randn(input_size, hidden_size1) * weight_scale
self.b1 = np.zeros((1, hidden_size1))
if self.has_hidden_layer2:
self.W2 = np.random.randn(hidden_size1, hidden_size2) * weight_scale
self.b2 = np.zeros((1, hidden_size2))
# output layer
self.W3 = np.random.randn(hidden_size2 if self.has_hidden_layer2 else hidden_size1, output_size) * weight_scale
self.b3 = np.zeros((1, output_size))
def forward(self, x):
# Forward pass through the network
self.x = x # input for backpropagation
self.z1 = x @ self.W1 + self.b1 # Linear transformation for first layer
self.a1 = self.relu(self.z1) # ReLU activation
if self.has_hidden_layer2:
self.z2 = self.a1 @ self.W2 + self.b2 # Linear transformation for second layer
self.a2 = self.relu(self.z2) # ReLU activation
self.z3 = self.a2 @ self.W3 + self.b3 # Linear transformation for output layer
else:
self.z3 = self.a1 @ self.W3 + self.b3 # No second layer, directly to output
self.a3 = self.softmax(self.z3) # Softmax to get class probabilities
return self.a3
def backward(self, y, lr):
# Backward pass for weight updates using gradient descent
m = y.shape[0]
y_one_hot = self.one_hot_encode(y, self.W3.shape[1]) # Converts labels to one-hot encoding
# Gradient for output layer
dz3 = self.a3 - y_one_hot
dw3 = (self.a2.T if self.has_hidden_layer2 else self.a1.T) @ dz3 / m
db3 = np.sum(dz3, axis=0, keepdims=True) / m
if self.has_hidden_layer2:
dz2 = (dz3 @ self.W3.T) * self.relu_deriv(self.z2) # Gradient for second hidden layer
dw2 = (self.a1.T @ dz2) / m
db2 = np.sum(dz2, axis=0, keepdims=True) / m
dz1 = (dz2 @ self.W2.T) * self.relu_deriv(self.z1) # Gradient for first hidden layer
else:
dz1 = (dz3 @ self.W3.T) * self.relu_deriv(self.z1) # No second hidden layer
dw1 = (self.x.T @ dz1) / m
db1 = np.sum(dz1, axis=0, keepdims=True) / m
# Update weights and biases using gradient descent
self.W3 -= lr * dw3
self.b3 -= lr * db3
if self.has_hidden_layer2:
self.W2 -= lr * dw2
self.b2 -= lr * db2
self.W1 -= lr * dw1
self.b1 -= lr * db1
@staticmethod
def relu(x):
# ReLU activation
return np.maximum(0, x)
@staticmethod
def relu_deriv(x):
# derivation of ReLU activation for backpropagation
return (x > 0).astype(float)
@staticmethod
def softmax(x):
# softmax function normalizes outputs to probabilities
e_x = np.exp(x - np.max(x, axis=1, keepdims=True)) # exponentiates inputs
return e_x / np.sum(e_x, axis=1, keepdims=True) # normalizes to get probabilities
@staticmethod
def one_hot_encode(y, num_classes):
# converts labels to one-hot encoded format
return np.eye(num_classes)[y]
@staticmethod
def cross_entropy_loss(y, y_hat):
# computes cross-entropy loss between true labels and predicted probabilities
m = y.shape[0]
m = y.shape[0]
eps = 1e-12
y_hat_clipped = np.clip(y_hat, eps, 1. - eps)
log_probs = -np.log(y_hat_clipped[np.arange(m), y])
return np.mean(log_probs)
def fit(self, x_train, y_train, x_val, y_val, lr, epochs, batch_size, number):
train_losses = []
val_accuracies = []
for epoch in range(1, epochs + 1):
perm = np.random.permutation(x_train.shape[0]) # Shuffle the training data
x_train_shuffled, y_train_shuffled = x_train[perm], y_train[perm]
epoch_loss = 0.0
num_batches = int(np.ceil(x_train.shape[0] / batch_size))
for i in range(num_batches):
start = i * batch_size
end = start + batch_size
x_batch = x_train_shuffled[start:end] # batch of inputs
y_batch = y_train_shuffled[start:end] # batch of labels
# Forward pass, backward pass, and weight update
self.forward(x_batch)
self.backward(y_batch, lr)
epoch_loss += self.cross_entropy_loss(y_batch, self.a3) # updating the epoch loss
epoch_loss /= num_batches # average loss is defined
train_losses.append(epoch_loss)
val_pred = self.predict(x_val)
val_acc = np.mean(val_pred == y_val)
val_accuracies.append(val_acc) \
print(f"Epoch {epoch:02d} | Training Loss: {epoch_loss:.4f} | Value Accuracy: {val_acc:.4f}")
self.plot_graph(train_losses, val_accuracies, number)
return val_accuracies[-1]
def plot_graph(self, train_losses, val_accuracies, number):
if not os.path.exists('results'):
os.makedirs('results') # creates results director
fig, ax1 = plt.subplots() # initializes the plot
ax1.set_xlabel('Epochs')
ax1.set_ylabel('Training Loss', color='tab:blue')
ax1.plot(range(1, len(train_losses) + 1), train_losses, color='tab:blue', label='Training Loss')
ax1.tick_params(axis='y', labelcolor='tab:blue') # defines loss subplot
ax2 = ax1.twinx()
ax2.set_ylabel('Validation Accuracy', color='tab:orange')
ax2.plot(range(1, len(val_accuracies) + 1), val_accuracies, color='tab:orange', label='Validation Accuracy')
ax2.tick_params(axis='y', labelcolor='tab:orange') # defines accuracy subplot
plt.title('Training Loss and Validation Accuracy over Epochs')
result_path = 'results/experiment-1-' + str(number) + '.png' # defines the file name
fig.savefig(result_path)
print(f"Graph saved to: {result_path}")
def predict(self, x): # predicts class labels for the input data
probs = self.forward(x) # forwards pass to get probabilities
return np.argmax(probs, axis=1) # returns the class with highest probability
# acquiring the FashionMNIST dataset
train_set = datasets.FashionMNIST(root='.', train=True, download=True)
test_set = datasets.FashionMNIST(root='.', train=False, download=True)
# preprocessing the data by flattening images and normalizing them.
x_train = train_set.data.numpy().reshape(-1, 28 * 28).astype(np.float32) / 255.0
y_train = train_set.targets.numpy()
x_test = test_set.data.numpy().reshape(-1, 28 * 28).astype(np.float32) / 255.0
y_test = test_set.targets.numpy()
# MLP initialization (no hidden layers)
mlp1 = MLP(
input_size=28 * 28,
hidden_size1=0,
hidden_size2=0,
output_size=10,
weight_scale=1e-2
)
# trains the model
mlp1.fit(
x_train=x_train,
y_train=y_train,
x_val=x_test,
y_val=y_test,
lr=1e-2,
epochs=10,
batch_size=256,
number = 1
)
# tests the model
test_pred1 = mlp1.predict(x_test)
test_acc1 = np.mean(test_pred1 == y_test)
print(f"\nFinal test accuracy: {test_acc1:.4f}")
# MLP initialization (one hidden layer)
mlp2 = MLP(
input_size=28 * 28,
hidden_size1=256,
hidden_size2=0,
output_size=10,
weight_scale=1e-2
)
# trains the model
mlp2.fit(
x_train=x_train,
y_train=y_train,
x_val=x_test,
y_val=y_test,
lr=1e-2,
epochs=10,
batch_size=256,
number = 2
)
# tests the model
test_pred2 = mlp2.predict(x_test)
test_acc2 = np.mean(test_pred2 == y_test)
print(f"\nFinal test accuracy: {test_acc2:.4f}")
# MLP initialization (two hidden layers)
mlp3 = MLP(
input_size=28 * 28,
hidden_size1=256,
hidden_size2=256,
output_size=10,
weight_scale=1e-2
)
# trains the model
mlp3.fit(
x_train=x_train,
y_train=y_train,
x_val=x_test,
y_val=y_test,
lr=1e-2,
epochs=10,
batch_size=256,
number = 3
)
# tests the model
test_pred3 = mlp3.predict(x_test)
test_acc3 = np.mean(test_pred3 == y_test)
print(f"\nFinal test accuracy: {test_acc3:.4f}")